Ⅰ 中考數學壓軸題思維方法
九種題型
1線段、角的計算與證明問題
中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡單題或者中檔題,目的在於考察基礎。第二部分往往就是開始拉分的中難題了。對這些題輕松掌握的意義不僅僅在於獲得分數,更重要的是對於整個做題過程中士氣,軍心的影響。線段與角的計算和證明,一般來說難度不會很大,只要找到關鍵「題眼」,後面的路子自己就「通」了。
2圖形位置關系
中學數學當中,圖形位置關系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關系。在中考中會包含在函數,坐標系以及幾何問題當中,但主要還是通過圓與其他圖形的關系來考察,這其中最重要的就是圓與三角形的各種問題。
3 動態幾何
從歷年中考來看,動態問題經常作為壓軸題目出現,得分率也是最低的。動態問題一般分兩類,一類是代數綜合方面,在坐標系中有動點,動直線,一般是利用多種函數交叉求解。另一類就是幾何綜合題,在梯形,矩形,三角形中設立動點、線以及整體平移翻轉,對考生的綜合分析能力進行考察。所以說,動態問題是中考數學當中的重中之重,只有完全掌握,才有機會拼高分。
4一元二次方程與二次函數
在這一類問題當中,尤以涉及的動態幾何問題最為艱難。幾何問題的難點在於想像,構造,往往有時候一條輔助線沒有想到,整個一道題就卡殼了。相比幾何綜合題來說,代數綜合題倒不需要太多巧妙的方法,但是對考生的計算能力以及代數功底有了比較高的要求。中考數學當中,代數問題往往是以一元二次方程與二次函數為主體,多種其他知識點輔助的形式出現的。一元二次方程與二次函數問題當中,純粹的一元二次方程解法通常會以簡單解答題的方式考察。但是在後面的中難檔大題當中,通常會和根的判別式,整數根和拋物線等知識點結合
5多種函數交叉綜合問題
初中數學所涉及的函數就一次函數,反比例函數以及二次函數。這類題目本身並不會太難,很少作為壓軸題出現,一般都是作為一道中檔次題目來考察考生對於一次函數以及反比例函數的掌握。所以在中考中面對這類問題,一定要做到避免失分。
6列方程(組)解應用題
在中考中,有一類題目說難不難,說不難又難,有的時候三兩下就有了思路,有的時候苦思冥想很久也沒有想法,這就是列方程或方程組解應用題。方程可以說是初中數學當中最重要的部分,所以也是中考中必考內容。從近年來的中考來看,結合時事熱點考的比較多,所以還需要考生有一些生活經驗。實際考試中,這類題目幾乎要麼得全分,要麼一分不得,但是也就那麼幾種題型,所以考生只需多練多掌握各個題類,總結出一些定式,就可以從容應對了。
7動態幾何與函數問題
整體說來,代幾綜合題大概有兩個側重,第一個是側重幾何方面,利用幾何圖形的性質結合代數知識來考察。而另一個則是側重代數方面,幾何性質只是一個引入點,更多的考察了考生的計算功夫。但是這兩種側重也沒有很嚴格的分野,很多題型都很類似。其中通過圖中已知幾何圖形構建函數是重點考察對象。做這類題時一定要有「減少復雜性」「增大靈活性」的主體思想。
8幾何圖形的歸納、猜想問題
中考加大了對考生歸納,總結,猜想這方面能力的考察,但是由於數列的系統知識要到高中才會正式考察,所以大多放在填空壓軸題來出。對於這類歸納總結問題來說,思考的方法是最重要的。
9閱讀理解問題
如今中考題型越來越活,閱讀理解題出現在數學當中就是最大的一個亮點。閱讀理解往往是先給一個材料,或介紹一個超綱的知識,或給出針對某一種題目的解法,然後再給條件出題。對於這種題來說,如果考生為求快速而完全無視閱讀材料而直接去做題的話,往往浪費大量時間也沒有思路,得不償失。所以如何讀懂題以及如何利用題就成為了關鍵。
解題策略
1.學會運用數形結合思想。
數形結合思想是指從幾何直觀的角度,利用幾何圖形的性質研究數量關系,尋求代數問題的解決方法(以形助數),或利用數量關系來研究幾何圖形的性質,解決幾何問題(以數助形)的一種數學思想. 數形結合 思想使數量關系和幾何圖形巧妙地結合起來,使問題得以解決。
縱觀近幾年全國各地的中考壓軸題,絕大部分都是與平面直角坐標系有關,其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,另一方面又可藉助幾何直觀,得到某些代數問題的解答。
2.學會運用函數與方程思想。
從分析問題的數量關系入手,適當設定未知數,把所研究的數學問題中已知量和未知量之間的數量關系,轉化為方程或方程組的數學模型,從而使問題得到解決的思維方法,這就是方程思想。
用方程思想解題的關鍵是利用已知條件或公式、定理中的已知結論構造方程(組)。這種思想在代數、幾何及生活實際中有著廣泛的應用。
直線與拋物線是初中數學中的兩類重要函數,即一次函數與二次函數所表示的圖形。因此,無論是求其解析式還是研究其性質,都離不開函數與方程的思想。例如函數解析式的確定,往往需要根據已知條件列方程或方程組並解之而得。
3.學會運用分類討論的思想。
分類討論思想可用來檢測學生思維的准確性與嚴密性,常常通過條件的多變性或結論的不確定性來進行考察,有些問題,如果不注意對各種情況分類討論,就有可能造成錯解或漏解,縱觀近幾年的中考壓軸題分類討論思想解題已成為新的熱點。
在解答某些數學問題時,有時會遇到多種情況,需要對各種情況加以分類,並逐類求解,然後綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數學思想,同時也是一種重要的解題策略,它體現了化整為零、積零為整的思想與歸類整理的方法。
分類的原則:(1)分類中的每一部分是相互獨立的;(2)一次分類按一個標准;(3)分類討論應逐級進行.正確的分類必須是周全的,既不重復、也不遺漏
4.學會運用等價轉換思想。
轉化思想是解決數學問題的一種最基本的數學思想。在研究數學問題時,我們通常是將未知問題轉化為已知的問題,將復雜的問題轉化為簡單的問題,將抽象的問題轉化為具體的問題,將實際問題轉化為數學問題。轉化的內涵非常豐富,已知與未知、數量與圖形、圖形與圖形之間都可以通過轉化來獲得解決問題的轉機。
任何一個數學問題的解決都離不開轉換的思想,初中數學中的轉換大體包括由已知向未知,由復雜向簡單的轉換,而作為中考壓軸題,更注意不同知識之間的聯系與轉換,一道中考壓軸題一般是融代數、幾何、三角於一體的綜合試題,轉換的思路更要得到充分的應用。
中考壓軸題所考察的並非孤立的知識點,也並非個別的思想方法,它是對考生綜合能力的一個全面考察,所涉及的知識面廣,所使用的數學思想方法也較全面。因此有的考生對壓軸題有一種恐懼感,認為自己的水平一般,做不了,甚至連看也沒看就放棄了,當然也就得不到應得的分數,為了提高壓軸題的得分率,考試中還需要有一種分題、分段的得分策略。
5.要學會搶得分點。
一道中考數學壓軸題解不出來,不等於「一點不懂、一點不會」,要將整道題目解題思路轉化為得分點。如中考數學壓軸題一般在大題下都有兩至三個小題,難易程度是第1小題較易,大部學生都能拿到分數;第2小題中等,起到承上啟下的作用;第3題偏難,不過往往建立在1、2兩小題的基礎之上。因此,我們在解答時要把第1小題的分數一定拿到,第2小題的分數要力爭拿到,第3小題的分數要爭取得到,這樣就大大提高了獲得中考數學高分的可能性。
中考的評分標準是按照題目所考查的知識點進行評分,解對知識點、抓住得分點就會得分。因此,對於數學中考壓軸題盡可能解答「靠近」得分點,最大限度地發揮自己的水平,把中考數學壓軸題變成高分踏腳石。
解中考數學壓軸題,一要樹立必勝的信心;二要具備扎實的基礎知識和熟練的基本技能;三要掌握常用的解題策略。
Ⅱ 怎麼解中考數學壓軸題:一般是二次函數,三角形相似.,動態問題相結合
平時多做, 多問老師。
如果你認為你不是尖子的話建議你多歸納一下各幾何圖形的第一輔助線和其他輔助線方法
一般有3小題你肯定會做,第4小題不一定會做,那麼這時候一定要舔輔助線,在二次函數
的圖像上嘗試構造相似,動態問題也是這個,多利用構造相似三角形然後三角形作高,構
造直角三角形然後通過高確定坐標,需要注意的是分類思想以及動態問題的分段函數,說
到底你還是要平時多做。
Ⅲ 中考物理題,動態電路問題
給你個答案,解題過程如圖所示。
Ⅳ 如何做初中數學的壓軸題
初中數學壓軸題,多的去了。想把這些題搞定,功夫在平時啊……(擦汗)
不過要說解題的經驗……
先說現在我能想起來的吧,望借鑒。
首先熟練掌握因式分解公式,平方差,完全平方,立方和,立方差,完全立方,十字相乘
不能把字母分解到因式里的,湊常數項(配方或配成能十字相乘的);有根式的,湊根式
遇到如a^2-3a=1.b^2-3b=1,
a≠b,想a,b是關於x的方程x^2-3x-1=0的兩根,諸如此類。
幾何證明題中出現三角形中線,一邊中點(諸如此類),實在想不通了就延長中線(或做平行四邊形)。
圓內出現相交弦,相交線定理就是絕處逢生的最後一招。
相等線段共端點,旋轉;互補(互余)兩角共頂點,旋轉。
線段之間難以理清的數量關系(可拓展到面積),相似全等用的山窮水盡,想三角形重心定理。
幾何證明題想不通了往往是題目條件沒看全……這時,回過頭再看去……
證角平分線:最令人頭疼的東西,能求出面積比和底邊比的,用點到角兩邊距離相等;有相等線段共端點的,做圓。另外三線合一總是被人遺漏
在圓中倒角倒線段,抓住弧之間的比,善用相似和三角函數。
看到一條切線,條件反射垂直半徑,看到兩條切線,條件反射切線長(平行的不算…)
最大最小值:非一個解析式就能解決的,先觀察,再枚舉……
函數:至今沒有發現什麼特好使的招數-
-
如果讓證明諸如x1<2<x2就把他給你的數字代進去-
-
一時總結不了太多,也不要沒有題目就空談解法-
-
總之……多做做難題,有些規律自然會上手。
你是哪的人,有能力的話看競賽題吧。我天津的,天津競賽題那叫一個崩潰!
別不信,網路一下,你就知道。。。
Ⅳ 解答中考數學動點題的技巧
動態幾何問題已經成為中考試題的一大熱點題型.這類試題以運動的點、線段、變化的角、圖形的面積為基本條件,給出一個或多個變數,要求確定變數與其他量之間的關系,或變數在一定條件為定值時,進行相關的幾何計算和綜合解答。
今天王老師以下面這些題型為例,談談此類問題的思路突破與解題反思,希望能幫助同學們提高數學成績。
專題一
建立動點問題函數解析式
函數揭示了運動變化過程中量與量之間的變化規律是初中數學的重要內容。
動點問題反映的是一種函數思想,由於某一個點或某圖形的有條件地運動變化,引起未知量與已知量間的一種變化關系,這種變化關系就是動點問題中的函數關系。
那麼我們怎樣建立這種函數解析式呢?下面王老師結合中考試題給大家舉例分析。
Part 1
應用勾股定理建立函數解析式
Ⅵ 請教關於中考動態問題的解法和考查目的,實用性的問題
應變能力和平時積累。
大致是這兩個方便。
建議你整理一下解題方式。【弄個小總結~】
不同類型的題目一定會有不同的解題方法。
動態問題的話他雖然求的東西不同,但是它的本質是"以靜求動"
這要求你有一定的應變能力。會把問題轉成自己熟悉的知識點。
所以好好專研一下題目。會有很大的幫助哦【其實會有隱藏條件的。要用心找】
最重要的是會分類。會分類的話差不多解決了
【還有不懂的話就加我QQ吧:360683098.我一般周日有空】
【另外求加分wwwwww】
Ⅶ 中考數學函數壓軸題 的解決方法
中考數學復習中考沖刺課程-WLL刷光二次函數題型(mp4視頻)
鏈接: https://pan..com/s/1aKlXcxn8rQ06_1qvpyfIqA
Ⅷ 濟寧中考數學壓軸題動態問題、
一般的都跟書上的例題或者平時模擬考試題有一定的聯系,平時考完模擬試老師在講例題時大概聽聽也就了解了;
1.應該了解幾何圖與函數圖之間的大體布局
2.分析出該題大概考的屬於什麼函數,(一般都聯繫到好幾種函數,每一個小問題絕大多數問的都不是一種函數,切記)
3.再大膽的進行描畫分析,很快的做很多假設,直到與題意問題相符。
其實這樣的題很浪費時間,首先確保前面的題無誤之後再細心研究該題,該題一般前一兩問很簡單幼稚,後一兩問則需要延伸擴展去仔細研究了,(切記,別在一棵樹上弔死)
Ⅸ 中考數學 動態型問題2
1.容易求得A(8,0),B(0,6)
所以OA=8,OB=6,由勾股定理AB=10
由於動點P,Q同時從O點出發,同時到達A點,且已知Q速度為1個單位
所以設P的速度為a個單位,則(OB+AB)/a=OA/1,得a=2
由於Q從O到A共用了8秒,所以0<=t<=8
下面分類討論
(1)0<=t<=3,此時P還在OB上
易有OQ=t,OP=2t,所以S=(OQ*OP)/2=t^2
(2)3<t<=8,此時P在AB上且PA=OB+AB-2t=16-2t,作PH垂直於X軸交X軸於H
由銳角三角比有PH=PAsin角A=PA*3/5=48/5-(6t)/5,OQ=t
S=(PH*OQ)/2=4.8t-0.6t^2
2.假設是1(1)中的情況有t=根號(48/5)
但t=根號(9.6)>3不符合0<=t<=3,所以捨去
假設是1(2)中情況
解方程4.8t-0.6t^2=9.6,即8t-t^2=16,即(t-4)^2=0,t=4
所以t=4,PH=4.8,易有P(1.6,4.8)
夠簡單明了吧,記得採納哦~