導航:首頁 > 研究方法 > 高能天體物理研究方法

高能天體物理研究方法

發布時間:2022-06-08 08:42:27

Ⅰ 天體物理學有何發展

1.天體物理學的畢業去向 。
專業對口的話,天文台,科學研究所,或者學校教授。
2.天體物理學是天文學的分支還是物理學的分支?
偏重於物理方面

Ⅱ 想研究宇宙學需要具備什麼知識技能

最基本的知識技能為:數學與物理,這是探索宇宙最主要也是最需要的,數學要計算恆星行星等相關的距離,各自轉、圍繞轉的速度與時間等,物理要知道恆星的內核變化溫度,星雲溫度與引力的大小作用,等,所及的知識面非常廣,物理與數學相互相成,缺一不可, 如果不是天文學家,物理數學反而不那麼重要,因為得不到宇宙中的第一手數據,所以,如果你是天文愛好者,則可以從星雲黑洞恆星行星、星系。恆星、行星的變化與產生等,從恆星內核的各元素之間的變化,這樣,你就可以知道恆星如何核聚變,如何維持核能量的穩定,黑洞是如何形成,也會知道引力是如何的統治宇宙,同時你也要了解原子的最基本結構,這就要對元素周期表的各元素之間的位置排位,

Ⅲ 高能天體物理學的觀測研究

觀測和研究表明,銀河系中最強的X射線輻射來自於包含有一顆緻密星和一顆光學主序星的密近雙星系統,其中的緻密星體積很小、可以是質量為太陽質量三分之一的中子星,或大於三倍太陽質量的黑洞,其強大的引力吸引著光學主星的表面物質和周圍氣體,形成一個吸積盤。吸積盤物質被黏滯加熱至高溫等離子體態,在緻密星附近產生和發射X射線,所以雙星X射線源大多是熱輻射天體,光度量級1030焦/秒。而且,由於光學主星的軌道運動,視向的X射線輻射會有軌道周期的掩食效應。另一類X射線強源發生在磁中子星上,具有強磁場的中子星可是密近雙星中的緻密星,如武仙座X-1;也可是超新星遺跡中的射電脈沖星,如蟹狀星雲脈沖星。輻射來自極冠處高能電子在強磁場中的同步輻射,視向強度受到中子星的自轉周期的調制,這類天體也被稱作X射線脈沖星或γ射線脈沖星。蟹狀星雲脈沖星的33毫秒周期性脈沖輻射一直延續到10千兆電子伏以上,證明這顆中子星極冠處的磁場強度達到了1012高斯。類星體和活動星系核是銀河系外星系尺度上的強X射線發射體,光度范圍1036—1040焦/秒,如果用巨型黑洞的吸積模型解釋類星體和活動星系核的強大的能量釋放現象,由於有較強的穿透率,X射線的發射即可反映其核心深處的作用規律,接近10千電子伏的X射線發射區已在吸積流進入黑洞視界前的最後穩定區。宇宙γ射線暴是近30年來最有吸引力的一類高能輻射現象,它們的短時標、隨機出現的輻射特徵很難判定其距離。1997年以來,觀測到40多例γ射線暴宿主星系的紅移,從而可斷定在地球附近觀測到的持續時間較長的一類宇宙γ射線暴,起源於銀河系外遙遠星系內恆星尺度的爆發,對因此而無法解釋的巨大能量的釋放可用帶噴注的火球模型解釋。宇宙中高於100兆電子伏的高能γ射線輻射被認為與早期宇宙演化以及極高能宇宙線(E接近1021電子伏)的傳播行為有密切聯系。宇宙線與星際氫分子雲的相互作用能夠解釋銀河系盤面上很強的彌漫γ射線輻射。逆康普頓散射在許多天體條件下是解釋高能γ射線產生的重要機制之一。
能夠到達地球附近的宇宙線稱做初級宇宙線,宇宙線核子在其產生及傳播過程中,不斷受到各種磁場,包括星系際和星際磁場的偏轉和加速作用,初級宇宙線失去了原來的方向,只有在1018電子伏以上的極高能區才有可能保留下原始的信息。現在比較共識的是「費米加速機制」和銀河系的漏箱模型:宇宙線核子起源於恆星演化晚期的超新星爆發;能量低於1015電子伏的初級宇宙線以質子成分為主,主要來自於銀河系內;能量高於1015電子伏的質子會從銀河系中「漏」出,初級宇宙線中重核的比例增加;高於1018電子伏的極高能宇宙線應該起源於銀河系外,能譜在1021電子伏以上應該有截斷。

Ⅳ 什麼是高能天體物理學

高能天體物理學(high-energy astrophysics)是研究發生在宇宙天體上的高能現象和高能過程的學科,是理論天體物理學的一個分支學科。這里的高能現象或高能過程一般是指下述兩種情形:①所涉及的能量同物體的靜止質量相對應的能量來比,不是一個可忽略的小量;②有高能粒子 或高能光子參與的現象或過程。隨著類星體、脈沖星、宇宙X射線源、宇宙γ射線源等的相繼發現,空間技術和基本粒子探測技術在天文觀測中的廣泛應用,以及高能物理學對天體物理學的不斷滲透,對宇宙中高能現象和高能過程的研究便日益活躍起來。

20世紀60年代人造地球衛星被送上太空以後,對宇宙天體的輻射過程的研究從可見光、射電擴展到X射線、γ射線等高能電磁輻射波段。在高能輻射波段,電磁輻射的波長短到接近或小於一個原子的大小,此時的輻射可像粒子一樣深入到物質深層而不再具有光波的反射、折射等波動特性,從而又被稱為高能光子。公式 E=hν=hc/λ 描述了這種電磁輻射的波粒二象性,適用於整個電磁波譜上光子的能量E、波長λ和頻率ν之間的關系。如一個波長為4,000埃(1埃=0.1納米)的藍光光子的能量為3.1電子伏;一個波長為1埃的X射線光子能量則為12.4千電子伏;而一個波長小於原子核大小(十萬分之一埃)的高能γ射線光子,能量可高於1.24千兆電子伏。因此,這里所說的「高能」,首先是指單個光子的能量高,其次是指輻射的總能量比一般恆星、星系的輻射要大的多,如活動星系核、宇宙γ射線暴等。

中文名:高能天體物理學
外文名:high-energy astrophysics
特徵:研究宇宙天體高能現象和高能過程
大類:物理學

Ⅳ 研究物理學的基本方法是什麼

物理學研究的領域可分為下列四大方面:
1.凝聚態物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。

2.原子,分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。
分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光學的基本性質及光與物質在在微觀領域的相互作用。

3.高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。現正尋找中。
4.天體物理——天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。
從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。尤其是今後數年內,圍繞黑物質方面可能有許多發現。

Ⅵ 天體物理學這個專業學習的內容包括什麼,就業方向是什麼,哪個學校招收該專業的學生

天體物理學(astrophysics)既是天文學的一個主要分支,也是物理學的分支之一,它是利用物理學的技術、方法和理論來研究天體的形態、結構、物理條件、化學組成和演化規律的學科。

天體物理學分為:太陽物理學、太陽系物理學、恆星物理學、恆星天文學、行星物理學、星系天文學、宇宙學、宇宙化學、天體演化學等分支學科。另外,射電天文學、空間天文學、高能天體物理學也是它的分支。

用物理學的技術和方法分析來自天體的電磁輻射,可得到天體的各種物理參數。根據這些參數運用物理理論來闡明發生在天體上的物理過程,及其演變是實測天體物理學和理論天體物理學的任務。

天體上發現的某些奇特現象也能啟發和推動現代物理學的發展,一些天體所具有的極端條件和宇宙環境為物理學提供了極好的天然實驗室。而理論物理學中的輻射、原子核、引力、等離子體、固體和基本粒子等理論,為研究類星體、宇宙線、黑洞脈沖星、星際塵埃、超新星爆發奠定了基礎。

Ⅶ 理論天體物理學的研究方法

理論天體物理的基本方法是把地球上實驗室范圍中發現的規律應用於研究宇宙天體。這種方法不僅對於說明和解釋已知的天體現象是有力的﹐而且還可以預言某些尚未觀測到的天體現象或天體。例如﹐在1932年發現中子之後不久﹐朗道﹑奧本海默等就根據星體平衡和穩定的理論預言可能存在穩定的緻密中子星。盡管這種預言中的天體與當時已知的所有天體差別極大(異乎尋常的高密度等)﹐可是在三十多年後的1967年﹐預言終於被證實。另一方面﹐許多物理學概念首先是由研究天體現象得到的﹐後來又是依靠天體現象加以檢驗的。例如﹐首先是天體物理學家注意到充滿宇宙間的電離物質具有一系列特性﹐這對建立等離子體物理學這門學科起了極大的推動作用。又如﹐熱核聚變概念是在研究恆星能源時首次提出的。禁線也是受到天體光譜研究的刺激才得到深入探討的。

Ⅷ 高能天體物理學的研究內容

高能天體物理學研究發生在天體上的這些高能光子的產生機理、輻射特徵和物理規律。此外,由於這種輻射與其起源處的宇宙線高能帶電粒子存在著密切關聯,能夠到達地球的宇宙線粒子的能量高,其能譜從10千兆電子伏開始直跨10個數量級,因此也把對高能宇宙線粒子的產生和加速機制的研究納入高能天體物理學的研究范圍 。
宇宙中的高能現象和高能過程是多種多樣的,超新星爆發、星系核的活動和爆發、天體的X射線和γ射線輻射、宇宙線和中微子過程(見中微子天文學)等都是明顯的例子。此外,在某些天體上,例如類星體和脈沖星等,也有一些高能過程。它們都是高能天體物理學的研究對象。高能天體物理學已經取得一些重要的研究成果,主要表現在以下幾個方面:①對於在恆星上可能發生的中微子過程作了開創性的研究,發現光生中微子過程、電子對湮沒中微子過程以及等離子體激元衰變中微子過程等,對晚期恆星的演化有重要的影響;②對太陽中微子的探測發現實驗值與理論值有較大的差距;③關於超新星的爆發機制,提出了一種有希望的理論;④超新星爆發可能是宇宙線的主要源泉;⑤在宇宙線中探測到一些能量大於1020電子伏的超高能粒子,中國科學院原子能研究所雲南站在1972年發現一個可能是質量大於1.8×10-23克的荷電粒子;⑥發現星系核的爆發現象和激烈的活動現象;⑦1973年發現宇宙γ射線爆發,1975年又發現宇宙X射線爆發,二者是70年代天體物理學的重大發現;⑧對超密態物質和中子星的組成、物態和結構作了相當深入的研究。
與高能天體物理的觀測基礎相對應的天文學分支又稱高能天文學。由於高能輻射的粒子特性,通常必須採用核探測器進行觀測;由於地球大氣的屏障作用,高能天文觀測只能在40千米以上的高空氣球、火箭和人造地球衛星上進行。1962年美國的火箭載探測器首次發現了一個光學亮度很弱而X射線通量很強的天體,名叫天蠍座X–1。這一發現說明,宇宙空間中存在著一類以高能電磁輻射為主的天體或天體現象,而且輻射的總能量之大是太陽一類的恆星或普通星系所無法相比的。天蠍座X–1的發現標志著高能天文學的誕生、全波天文觀測時代的開始。在以後的40年中,100餘顆高能天文衛星被送上太空,現已觀測到能量從1千電子伏直至1,000千兆電子伏以上天體的高能γ光子輻射,發現了上萬個宇宙X射線源、數百個宇宙γ射線源(包括X射線脈沖星、類星體等一大批高能天體)、宇宙γ射線暴、X射線暴、雙星緻密星和黑洞的X射線輻射等一系列的高能輻射現象,帶給人們一個全新的宇觀世界,高能天文觀測本身及其所帶動的高能天體物理研究獲得了前所沒有的迅速發展。

Ⅸ 天體物理方面

天體物理學是應用物理學的技術、方法和理論,研究天體的形態、結構、化學組成、物理狀態和演化規律的天文學分支學科。
利用理論物理方法研究天體的物理性質和過程的一門學科。1859年,基爾霍夫根據熱力學規律解釋太陽光譜的夫琅和費線,斷言在太陽上存在著某些和地球上一樣的化學元素,這表明,可以利用理論物理的普遍規律從天文實測結果中分析出天體的內在性質,是為理論天體物理學的開端。理論天體物理學的發展緊密地依賴於理論物理學的進步,幾乎理論物理學每一項重要突破,都會大大推動理論天體物理學的前進。二十世紀二十年代初量子理論的建立,使深入分析恆星的光譜成為可能,並由此建立了恆星大氣的系統理論。三十年代原子核物理學的發展,使恆星能源的疑問獲得滿意的解決,從而使恆星內部結構理論迅速發展;並且依據赫羅圖的實測結果,確立了恆星演化的科學理論。1917年愛因斯坦用廣義相對論分析宇宙的結構,創立了相對論宇宙學。1929年哈勃發現了河外星系的譜線紅移與距離間的關系,以後人們利用廣義相對論的引力理論來分析有關河外天體的觀測資料,探索大尺度上的物質結構和運動,這就形成了現代宇宙學。
從公元前129年古希臘天文學家喜帕恰斯目測恆星光度起,中間經過1609年伽利略使用光學望遠鏡觀測天體,繪制月面圖,1655~1656年惠更斯發現土星光環和獵戶座星雲,後來還有哈雷發現恆星自行,到十八世紀老赫歇耳開創恆星天文學,這是天體物理學的孕育時期。
十九世紀中葉,三種物理方法——分光學、光度學和照相術廣泛應用於天體的觀測研究以後,對天體的結構、化學組成、物理狀態的研究形成了完整的科學體系,天體物理學開始成為天文學的一個獨立的分支學科。
天體物理學的發展,促使天文觀測和研究不斷出現新成果和新發現。1859年,基爾霍夫對太陽光譜的吸收線(即夫琅和費譜線)作出科學解釋。他認為吸收線是光球所發出的連續光譜被太陽大氣吸收而成的,這一發現推動了天文學家用分光鏡研究恆星;1864年,哈根斯用高色散度的攝譜儀觀測恆星,證認出某些元素的譜線,以後根據多普勒效應又測定了一些恆星的視向速度;1885年,皮克林首先使用物端棱鏡拍攝光譜,進行光譜分類。通過對行星狀星雲和彌漫星雲的研究,在仙女座星雲中發現新星。這些發現使天體物理學不斷向廣度和深度發展。
1905年,赫茨普龍在觀測基礎上將部分恆星分為巨星和矮星;1913年,羅素按絕對星等與光譜型繪制恆星分布圖,即赫羅圖;1916年,亞當斯和科爾許特發現相同光譜型的巨星光譜和矮星光譜存在細微差別,並確立用光譜求距離的分光視差法。
在天體物理理論方面,1920年,薩哈提出恆星大氣電離理論,通過埃姆登、史瓦西、愛丁頓等人的研究,關於恆星內部結構的理論逐漸成熟;1938年,貝特提出了氫聚變為氨的熱核反應理論,成功地解決了主序星的產能機制問題。
1929年,哈勃在研究河外星系光譜時,提出了哈勃定律,這極大地推動了星系天文學的發展;1931~1932年,央斯基發現了來自銀河系中心方向的宇宙無線電波;四十年代,英國軍用雷達發現了太陽的無線電輻射,從此射電天文蓬勃發展起來;六十年代用射電天文手段又發現了類星體、脈沖星、星際分子、微波背景輻射。
1946年美國開始用火箭在離地面30~100公里高度處拍攝紫外光譜。1957年,蘇聯發射人造地球衛星,為大氣外層空間觀測創造了條件。以後,美國、西歐、日本也相繼發射用於觀測天體的人造衛星。現在世界各國已發射數量可觀的宇宙飛行器,其中裝有各種類型的探測器,用以探測天體的紫外線、x射線、γ射線等波段的輻射。從此天文學進入全波段觀測時代。
天體物理學分為:太陽物理學、太陽系物理學、恆星物理學、恆星天文學、星系天文學、宇宙學、宇宙化學、天體演化學等分支學科。另外,射電天文學、空間天文學、高能天體物理學也是它的分支。
太陽是離地球最近的一顆普通恆星。對太陽的研究,經歷了從研究它的內部結構、能量來源、化學組成和靜態表面結構,到使用多波段電磁輻射研究它的活動現象的過程。太陽風的影響能夠為我們直接感受。日地關系密切,所以研究有關地球的科學,必須考慮太陽的因素。
對行星的研究是天體物理學的一個重要方面。近二十年來,對彗星的研究以及對行星際物質的分布、密度、溫度、磁場和化學組成等方面的研究,都取得了重要成果。隨著空間探測的進展,太陽系的研究又成為最活躍的領域之一。
銀河系有一、二千億顆恆星,其物理狀態千差萬別。球狀體、紅外星、天體微波激射源、赫比格一阿羅天體,可能都是從星際雲到恆星之間的過渡天體。
特殊恆星更是多種多樣:造父變星的光變周期為1~50天,光變幅為0.1~2個星等;長周期變星的光變周期為90~1000天,光變幅為2.5~9個星等;天琴座RR型變星的光變周期為0.05~1.5天,光變幅不超過1~2個星等;金牛座 T型變星光變不規則,沒有固定的周期;新星爆發時拋出大量物質,光度急驟增加幾萬到幾百萬倍;有的紅巨星的半徑比太陽半徑大1000倍以上;白矮星的密度為每立方厘米一百公斤到十噸,中子星密度更高達每立方厘米一億噸到一千億噸。
各種各樣的恆星,為研究恆星的形成和演化規律提供了樣品。另外,天體上特殊的物理條件,在地球上往往並不具備,利用天體現象探索物理規律,是天體物理學的重要職能。
通過多年研究,人們對銀河系的整體圖像以及太陽在銀河系中的地位,有了比較正確的認識。銀河系的直徑為十萬光年,厚兩萬光年。通過對銀河系恆星集團的研究,建立和證實了星族和銀河系次系等概念。對銀河系自轉、旋臂結構、銀核和銀暈也進行了大量研究。
河外星系與銀河系屬於同一天體層次。星系按形態大致分為五類:旋渦星系、棒旋星系、透鏡型星系、橢圓星系、不規則星系。按星系的質量大小,又可分為矮星系、巨星系、超巨星系,它們的質量依次約為太陽的一百萬到十億倍、幾百億倍和萬億倍以上。同銀河系一樣,星系也由恆星和氣體組成三、五個、十來個、幾十個以至成百上千個星系組成星系集團,稱星系群、星系團。
通過各種觀測手段,人們的視野擴展到150億光年的宇宙「深處「。這就是「觀測到的宇宙」,或稱為「我們的宇宙」,也就是總星系。
研究表明,宇宙物質由化學元素周期表中近百種化學元素和289種同位素組成。在不同宇宙物質中發現了地球上不存在的礦物和分子。
二百多年來,關於太陽系的起源和演化問題已提出四十多種學說,但至今還沒有一個學說被認為是完善的而被普遍接受。近三十年來這方面有了很大進展,目前大多數天文學家贊成的恆星演化學說是所謂的「彌漫說」,但也有少數人認為恆星是由超密物質轉化而成的。
用物理學的技術和方法分析來自天體的電磁輻射,可得到天體的各種物理參數。根據這些參數運用物理理論來闡明發生在天體上的物理過程,及其演變是實測天體物理學和理論天體物理學的任務。
除了宇宙線的粒子探測、隕石的實驗室分析、宇宙飛行器對太陽系天體的實地采樣和分析,以及尚在努力探索中的引力波觀測之外,目前關於天體的信息都來自電磁輻射。天體物理儀器的作用是對電磁輻射進行收集定位、變換和分析處理。電磁輻射的收集和定位是由望遠鏡(包括射電望遠鏡)來實現的。
從輻射的連續譜可以判斷輻射的機制,還可以得知天體的表面溫度;從早型星的巴耳末系限上的跳變,可以得知天體的表面壓力;由UBV測光系統也可粗略地確定恆星的光度和溫度值。從線譜可以獲得更多的信息:視向速度、電子溫度、電子密度、化學組成、激發溫度端流速度。對雙星的觀測研究,可以得到天體的半徑、質量和光度等重要數據。研究脈動變星的光變周期與光度之間的關系,可以確定天體的距離。
輻射轉移理論是解釋已知天象的有力工具,而且還可以預言尚未觀測到的天體和天象。以輻射轉移理論為基礎建立的恆星大氣理論,以熱核聚變概念為基礎發展起來的元素合成理論、恆星內部結構理論和天體演化理論,乃是理論天體物理學的基礎。
理論物理學中的輻射、原子核、引力、等離子體、固體和基本粒子等理論,為研究類星體、宇宙線、黑洞脈沖星、星際塵埃、超新星爆發奠定了基礎。
人類對宇宙的認識不斷擴大,不僅使人們愈來愈深入地了解宇宙的結構和演化規律,同時也促使物理學在揭示微觀世界的奧秘方面取得進展。氮元素就是首先在太陽上發現的,過了二十五年後才在地球上找到。熱核聚變概念是在研究恆星能源時提出的。由於地面條件的限制,某些物理規律的驗證只有通過宇宙這個「實驗室」才能進行。六十年代天文學的四大發現——類星體、脈沖星、星際分子、微波背景輻射,促進了高能天體物理學、宇宙化學、天體生物學和天體演化學的發展,也向物理學、化學、生物學提出了新的課題。
高能天體物理學
high energy astrophysics
天體物理學的一個分支學科。主要任務是研究天體上發生的各種高能現象和高能過程。它涉及的面很廣,既包括有高能粒子(或高能光子)參與的各種天文現象和物理過程 ,也包括有大量能量的產生和釋放的天文現象和物理過程。最早,高能天體物理學主要限於宇宙線的探測和研究,真正作為一門學科是20世紀60年代後才建立起來的。60年代以後 ,各種新的探測手段應用到天文研究中,一大批新天體、新天象的發現,使高能天體物理學得到了迅速發展。高能天體物理學的研究對象包括類星體和活動星系核、脈沖星、超新星爆發、黑洞理論、X射線源、γ射線源、宇宙線、各種中微子過程和高能粒子過程等等。
此外,在某些天體上,例如類星體和脈沖星等,也有一些高能過程。它們都是高能天體物理學的研究對象。高能天體物理學已經取得一些重要表現在以下幾個方面:對於在恆星上可能發生的中微子過程作了開創性的研究,發現光生中微子過程、電子對湮沒中微子過程以及等離子體激元衰變中微子過程等,對晚期恆星的演化有重要的影響;對太陽中微子的探測發現實驗值與理論值有較大的差距;關於超新星的爆發機制,提出了一種有希望的理論;超新星爆發可能是宇宙線的主要源泉;在宇宙線中探測到一些能量大於 10電子伏的超高能粒子,中國科學院原子能研究所雲南站在1972年發現一個可能是質量大於1.8×10克的荷電粒子;發現星系核的爆發現象和激烈的活動現象;

Ⅹ 星系天文學的研究方法和手段

用中等口徑的光學望遠鏡,可對本星系群的一些成員(如大小麥哲倫雲、仙女星系)的星系盤、旋臂、星系核、星系暈和星系冕進行分部觀察,並對其成員天體(星團、電離氫區、行星狀星雲、超巨星、紅巨星、新星、造父變星)作光度測量和光譜分析。然而,除少數近距星系外,絕大多數星系因距離遙遠,呈現為暗弱的小面光源,其微小程度甚至接近於點源。要取得它們的光學觀測資料,必須用大口徑望遠鏡和高效能輻射接收裝置,而對百億光年的深空探索還得配備強光力廣角設備。要掌握河外天體的射電天圖,則必須有大型的射電煜擤o並且還要具備能與光學成像相稱的射電分辨技術。河外星繫世界的非熱輻射和高能過程,正吸引著全球的大型射電儀器和空間探測裝置。當代威力強大的各個波段的望遠鏡都把河外天體作為重要的觀察對象,以期在這方面獲得更大的進展和突破。星系天文學的主要研究手段是天體物理方法和射電天文方法。此外,星系動力學和統計天文學也是重要的研究工具。

閱讀全文

與高能天體物理研究方法相關的資料

熱點內容
業余愛好者鍛煉方法 瀏覽:770
水晶糕的簡單製作方法 瀏覽:534
蛋黃包檢測方法 瀏覽:326
不同調節後視鏡方法的種類圖片 瀏覽:366
睡眠淺怎麼解決方法 瀏覽:588
保險合同的保險期限通常採用的計算方法有 瀏覽:531
地下水高錳酸鉀指數測量方法 瀏覽:342
纖維樁使用方法 瀏覽:693
貴州點光源安裝方法 瀏覽:817
化學鍍方法和技巧 瀏覽:500
寶寶怎麼治療最好的方法 瀏覽:467
csgo連入專屬伺服器失敗解決方法 瀏覽:947
溶液酸鹼性計算方法 瀏覽:213
戰馬貼膜的正確方法 瀏覽:181
復印機安裝與操作方法 瀏覽:29
概率中的個數計算方法 瀏覽:833
金帥洗衣機使用方法 瀏覽:662
怎麼選擇樁的施工方法 瀏覽:601
聯想筆記本限速在哪裡設置方法 瀏覽:496
怎樣快速止牙痛土方法 瀏覽:64