A. 什麼事元素分析法
元素分析是用來鑒定被測物質由哪些元素(或離子)所組成,這類方法稱為定性分析法;用於測定各組分間(各種化學成分)量的關系(通常以百分比表示),稱為定量分析法。物質的五大元素分析所採用的化學分析方法可分為經典化學分析和儀器分析兩類。前者基本上採用化學方法來達到分析的目的,後者主要採用化學和物理方法(特別是最後的測定階段常應用物理方法)來獲取結果,這類分析方法中有的要應用較為復雜的特定儀器。發展迅速,且各種分析工作絕大部分是應用儀器分析法來完成的,但是經典的化學分析方法仍有其重要意義。有些大型精密儀器測得的結果是相對值,而五大元素分析儀器的校正和校對所需要的標准參考物質一般是用准確的經典化學分析方法測定的。因此,儀器分析法與化學分析法是相輔相成的,很難以一種方法來完全取代另一種。
B. 什麼是三元素分析法
關於 三元素分析方法溶液配製及操作方法(僅供參考) 溶液配製:
(一)硅之測定(亞鐵還原硅鉬蘭光度法)
1、方法提要 試樣溶於稀銷酸,滴加高錳酸鉀氧化,硅酸離子全部轉化成正硅酸離子,在一定酸度下與鉬酸銨作用,生成硅鋁雜多酸。然後在草酸存在下用亞鐵還原成硅鉬蘭,藉此進行硅的光度測定。
2、試劑 (1)稀硝酸(1+5) (2)高錳酸鉀溶液(2%) (3)鹼性鉬酸銨溶液: A、鉬酸銨溶液(9%) B、碳酸銨溶液(18%) A、B兩溶液等體積合並,貯於塑料瓶中備用。 (4)草酸溶液(2.5%) (5)硫酸亞鐵銨溶液(1.5%) 稱硫酸亞鐵銨15g,先將稀硫酸(1+1)1ml濕勻亞鐵鹽,然後以水稀釋至1L,溶解後搖勻備用。
3、分析步驟 稱取試樣30mg,加至高型燒杯(250ml)中,杯內加有預熱之稀硝酸(1+5)10ml,品溶清,逸去黃色氣體,加高錳酸鉀(2%)2-3滴,繼續加熱至沸,立即加入鹼性鉬酸銨溶液10ml搖動10秒鍾,再加入草酸(2.5%)40ml,硫酸亞鐵銨(1.5%)40ml搖勻以水作參比,扣除空白,1cm專用比色皿,直讀含量。更多質量檢測、分析測試、化學計量、標准物質相關技術資料請參考國家標准物質臨床化學標准物質
注意事項 (1)溶解樣品時應低溫溶解。
(二)錳之測定(過硫酸銨銀鹽光度法)
1、方法提要 鋼鐵試樣,在硝,磷酸介質中,以銀離子為催化劑,用過硫酸銨氧化將低價錳子變成高錳酸,藉此進行錳的光度測定。
2、試劑 (1)定錳混合液 硝酸450ml,磷酸72ml,硝酸銀7.2g,用水稀釋到2L、搖勻,貯於棕色瓶中備用。 (2)過硫酸銨溶液(15%)或固體。
3、分析步驟 稱試樣50mg,置於高型燒杯(250ml)中,溶於預熱定錳混合液15ml,待試樣溶解畢,加入過硫酸銨溶液(15%)10ml(聯測時加固體過硫酸銨約1g)繼續加熱至沸並出現大氣泡約10秒鍾後,加水40ml傾入比色皿中,直讀含量。
4、注意事項 (1)過硫酸銨加入後,需控制煮沸10秒鍾。 (2)記取含量時,要等少量小氣泡逸去後讀取。 (三)磷之測定(氟化鈉——氯化亞錫磷鉬蘭光度法)
1、試樣在硝酸介質中,以高錳酸鉀氧化,使偏磷酸氧化成正磷酸,與鉬酸銨生成磷鉬雜多酸,以氯化亞錫還原成磷鉬蘭進行光度測定。酒石酸離子消除硅的干擾。氯化鈉絡合鐵離子,生成無色絡合物,並抑制硝酸分子的電離作用。
2、試劑 (1)稀銷酸(1+2.5) (2)高錳酸鉀溶液(2%) (3)鉬酸銨——酒石酸鉀溶液 取等體積的鉬酸銨溶液(10%)與酒石酸鉀鈉(10%)混勻備用。 (4)氟化鈉(2.4%)——氯化亞錫(0.2%)溶液; 氟化鈉24g溶於800ml水中,可稍加熱助溶、氯化亞錫2g,以稀鹽酸(1+1)5ml,加熱至全部溶清;加入上述溶液,以水稀釋至1L,必要時可過濾。當天使用,經常使用時,可配大量氟化鈉溶液,使用時取出部分溶液加入規定量之氯化亞錫。
3、分析步驟 稱試樣50mg,置於高型燒杯(250ml)中,加入預熱稀硝酸(1+2.5)10ml,加熱至試樣溶解,逸去黃色氣體,滴加高錳酸鉀溶液(2%)2-3滴。繼續加熱沸騰,10秒鍾不褪色,加入鉬酸銨一酒石酸鉀鈉溶液10ml搖勻。再加氟化鈉一氯化亞錫溶液40ml。水作參比,傾入比色皿,讀取含量。
4、注意事項 (1)氧化時應使溶液至沸,並保持5—10秒鍾。 (2)分析操作手續相對保持一致,以保證分析結果重現性和准確度。 (3)含量高至0.050%以上,色澤穩定時間較短,讀數不應耽誤,在0.080%時更短,要即刻讀取。
C. 煤的工業分析與元素分析的優缺點
工業分析:1. 水分
(1) 外在水分(Wwz)外在水分是指煤在開采、運輸和洗選過程中潤濕在煤的外表以及大毛細孔(直徑>10-5厘米)中的水。它以機械方式與煤相連結著,較易蒸發,其蒸汽壓與純水的蒸汽相等.與煤粒度等有關,而與煤質無直接關系.
(2)內在水分(Wnz)吸附或凝聚在煤粒內部的毛細孔(直徑〈10-5厘米〉中的水,稱為內在水分.內在水分指將風干煤加熱到105~110時所失去的水分,它主要以物理化學方式(吸附等)與煤相連結著,較難蒸發,故蒸氣壓小於純水的蒸汽壓. 失去內在水分的煤稱為絕對乾燥或干煤.
2. 灰分
1).灰分的來源和種類 煤灰幾呼全部來源於煤中的礦物質,但煤在燃燒時,礦物質大部分被氧化,分解,並失去結晶水,因此,煤灰的組成和含量與煤中礦物質的組成和含量差別很大.我們一般說的煤的灰分實際上就是煤灰產率,煤灰成分及其含量與層聚積環境有關。 大量試驗資料表明,SiO2含量在45~60%時,灰熔點隨SiO2含量增加而降低;SiO2在其含量〈45%或〉60%時,與灰熔點的關系不夠明顯。A12O3在煤灰中始終起增高灰熔點的作用。煤灰中A12O3的含量超過期30%時,灰熔點在1500。灰成分中Fe2O3,CaO,MgO均為較易熔組分,這些組分含量越高,灰熔點就越低。灰熔點也可根據其組成用經驗公式進行計算。
3. 揮發分和固定碳
揮發分主要是煤中有機質熱分解的產物,評價煤質時為了排除水分,灰分,變化的影響,須將分析煤樣揮發分換算為以可燃物為基準的揮發分,以符號VR表示。揮發分隨煤化程度升高而降低的規律性十分明顯,可以初步估計煤的種類和化學工藝性質,而且揮發分的測定簡單,快速發分的分析結果常受煤中礦物質的影響。所以當煤中碳酸鹽含量較高,礦物質在高溫下分解出來的CO2,結果水等也包括在揮發分內。所以當煤中碳酸鹽含量較高,分解出來的CO2產率大於2%時,需要對煤的揮發進行正。也可在測定揮發分之前,用鹽酸處理分析煤樣,使煤中碳中碳酸鹽事先分解。在我國大我數煤中,粘土礦物,高嶺土在560析出的結果水也算入揮發分,因此粘土礦物含量高的煤所測出的揮發分通常偏高。
固定碳就是測定揮發分後殘留下來的機物質的產率,可按下式算出: Cgd=1000-(Wf+Af+Vf)
D. 因素分析法有哪些優點和不足
因子分析法與主成分分析法都屬於因素分析法,都基於統計分析方法,但兩者有較大的區別:主成分分析是通過坐標變換提取主成分,也就是將一組具有相關性的變數變換為一組獨立的變數,將主成分表示為原始觀察變數的線性組合;而因子分析法是要構造因子模型,將原始觀察變數分解為因子的線性組合。通過對上述內容的學習,可以看出因子分析法和主成分分析法的主要區別為:
(1)主成分分析是將主要成分表示為原始觀察變數的線性組合,而因子分析是將原始觀察變數表示為新因子的線性組合,原始觀察變數在兩種情況下所處的位置不同。
(2)主成分分析中,新變數Z的坐標維數j(或主成分的維數)與原始變數維數相同,它只是將一組具有相關性的變數通過正交變換轉換成一組維數相同的獨立變數,再按總方差誤差的允許值大小,來選定q個(q<p)主成分;而因子分析法是要構造一個模型,將問題的為數眾多的變數減少為幾個新因子,新因子變數數m小於原始變數數P,從而構造成一個結構簡單的模型。可以認為,因子分析法是主成分分析法的發展。
(3)主成分分析中,經正交變換的變數系數是相關矩陣R的特徵向量的相應元素;而因子分析模型的變數系數取自因子負荷量,即。因子負荷量矩陣A與相關矩陣R滿足以下關系:
其中,U為R的特徵向量。
在考慮有殘余項ε時,可設包含εi的矩陣ρ為誤差項,則有R − AAT = ρ。
在因子分析中,殘余項應只在ρ的對角元素項中,因特殊項只屬於原變數項,因此,的選擇應以ρ的非對角元素的方差最小為原則。而在主成分分析中,選擇原則是使舍棄成分所對應的方差項累積值不超過規定值,或者說被舍棄項各對角要素的自乘和為最小,這兩者是不通的。
E. 元素分析的檢測辦法有哪些
原子吸收光譜法、分光光度法、原子熒光光譜法、電化學法等。元素分析服務是英格爾的特色檢測之一,從常量至痕量量元素檢測、鹵族元素、稀土元素、土壤肥料元素、水樣元素等檢測都非常精準。
F. 在排列組合中位置分析法和元素分析法的區別
位置分析法和元素分析法是解決排列組合問題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再處理其它元素.若以位置分析為主,需先滿足特殊位置的要求,再處理其它位置。若有多個約束條件,往往是考慮一個約束條件的同時還要兼顧其它條件
G. ICP法測定元素與原子吸收法相比有哪些優缺點
摘要 ICP可以檢測的元素范圍B~U,原子吸收同樣是這個范圍,請教二者各自的優勢在哪些元素的檢測上?
H. 相分析的方法有哪幾種元素成分分析的方法有哪幾種簡述一下它們的優缺點
相分析的方法有很多種,元素成分分析的方法有很多種,優缺點各有各的好壞。相分析的方法有很多種,元素成分分析的方法有很多種,優缺點各有各的好壞。相分析的方法有很多種,元素成分分析的方法有很多種,優缺點各有各的好壞。相分析的方法有很多種,元素成分分析的方法有很多種,優缺點各有各的好壞。
I. 金屬元素分析方法
金屬材料分為:輕金屬、重金屬、熔敷金屬、有色金屬、稀有金屬、貴金屬、半金屬等; 鋼鐵、緊固件、鑄鐵、鋼管、鋼筋線材、焊接材料、鋼板型鋼、銅材鋁材、鋼絲繩及各種金屬掛件等各類金屬及合金製品。
一,金屬的物理性質
金屬晶體內存在自由電子,使金屬具有許多共同的特性。 1、大多數金屬晶體都是銀白色或白色、灰白色的,有金屬光澤,不透明; 2、一般金屬具有較高的熔點、沸點和硬度,但不同金屬又各有差異。常溫下,除汞(Hg)為液態外,一般金屬都是固態。3、金屬都有良好的導熱性和導電性,還有良好的延性和展性,可以進行機械加工。
二,金屬的化學性質
通常把元素周期表中具有金屬光澤、可塑性、導電性及導熱性良好的化學元素稱為金屬。金屬最突出的特性是它們的容易失去電子的傾向。因此,從化學角度看,金屬是指在溶液中容易生成正離子的化學元素,其氧化物與水結合形成氫氧化物而不形成相應的酸。金屬之間在化學上的差別主要表現在電子序方面,許多化學反應,特別是氧化還原反應,決定與其電極電位的正負及其數值大小。
三,金屬材料分析方法
在金屬檢測物中的化學成分方法還是很多,現在公司普遍採用的是用光譜儀測定.光譜儀有傳統的光電管光譜儀,以及隨著數碼技術的發展,並在檢測中發揮越來越大的作用。還有化學分析方法檢測金屬物中化學成分含量的,通過對金屬物試塊的切削、腐蝕通過顯微鏡用肉眼觀測然後對比金屬化學成分圖譜判定起各種成分的含量。
四、定量檢測技術
重金屬分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子熒光法(AFS)、電感耦合等離子體法(ICP)、X熒光光譜(XRF)、電感耦合等離子質譜法(ICP-MS)。除上述方法外,更引入光譜法來進行檢測,精密度更高,更為准確!日本和歐盟國家有的採用電感耦合等離子質譜法(ICP-MS)分析,但對國內用戶而言,儀器成本高。也有的採用X熒光光譜(XRF)分析,優點是無損檢測,可直接分析成品,但檢測精度和重復性不如光譜法。最新流行的檢測方法--陽極溶出法,檢測速度快,數值准確,可用於現場等環境應急檢測。
J. 進行土壤重金屬元素含量分析測試方法都有哪些
2.土壤中重金屬檢測方法 2.1 原子熒光光譜法
原子熒光光譜法是以原子在輻射能量分析的發射光譜分析法。利用激發光源發出的特徵發射光照射一定濃度的待測元素的原子蒸氣,使之產生原子熒光,在一定條件下,熒光強度與被測溶液中待測元素的濃度關系遵循Lambert-Beer定律,通過測定熒光的強度即可求出待測樣品中該元素的含量。
原子熒光光譜法具有原子吸收和原子發射兩種分析方法的優勢[4],並且克服了這2種方法在某些地方的不足。該法的優點是靈敏度高,目前已有20多種元素的檢出限優於原子吸收光譜法和原子發射光譜法;譜線簡單;在低濃度時校準曲線的線性范圍寬達3~5個數量級,特別是用激光做激發光源時更佳,但其存在熒光淬滅效應,散射光干擾等問題[5]。該方法主要用於金屬元素的測定,在環境科學、高純物質、礦物、水質監控、生物製品和醫學分析等方面有廣泛的應用[6]。突出在土壤中的應用如何,以下各方法均是這個問題,相比之下2.5寫的比較好
應用原子熒光光譜法測定土壤的重金屬快速准確,測定周期約為2小時,具有檢出限低、精密度好,干擾少和操作簡單方便,值得推廣應用。 2.2 原子吸收光譜法
原子吸收光譜法又稱原子吸收分光光度分析法,是基於氣態的基態原子外層電子對紫外光和可見光范圍的相對應原子共振輻射線的吸收強度來定量被測元素含量為基礎的分析方法,是一種測量特定氣態原子對光輻射的吸收的方法[7]。其基本原理是從空心陰極燈或光源中發射出一束特定波長的入射光,通過原子化器中待測元素的原子蒸汽時,部分被吸收,透過的部分經分光系統和檢測系統即可測得該特徵譜線被吸收的程度即吸光度,根據吸光度與該元素的原子濃度成線性關系,即可求出待測物的含量[8]。
原子吸收光譜法在農業方面,主要應用與土壤、肥料及植物中的中微量元素分析、水質分析、土壤重金屬環境污染分析、土壤背景值調查及農業環境評價分析等方面。該方法的優點是:選擇性強、靈敏度高、分析范圍廣、抗干擾能力強、精密度高[9]。其不足之處有多元素同時測定有困難,對非金屬及難熔元素的測定尚有困難,對復雜樣品分析干擾也較嚴重,石墨爐原子吸收分析的重現性較差
[10]
。
2.3 電感耦合等離子體發射光譜法
電感耦合等離子體發射光譜是根據被測元素的原子或離子,在光源中被激發而產生特徵輻射,通過判斷這種特徵輻射的存在及其強度的大小,對各元素進行定性和定量分析[11]。
電感耦合等離子體發射光譜法應用於環境水樣、土壤樣品中的微量元素進行分析,在元素分析測試中的應用技術具有簡便、快速、分析速度快;檢出限低,多數可達0.005μg/ml以下[12];測量動態線性范圍寬,一般可達5~6個數量級,可同時進行高含量元素和低含量元素的分析,可達到石墨爐原子吸收光譜儀的部分檢出水平;可多種元素同時分析,可定性、定量分析金屬元素,也可分析部分非金屬元素,提高了分析效率,基體效應小,低背景干擾、高信噪比、精密度高、准確性好等優點[13]。 2.4 激光誘導擊穿光譜法
激光誘導擊穿光譜技術是一種最為常用的激光燒蝕光譜分析技術。其工作原理是:激光經過會聚透鏡會聚,高峰值功率密度使未知樣品表面物質氣化、電離,激發形成高溫、高能等離子體(溫度可達10 000K),等離子體輻射出來的原子光譜和離子光譜被光學系統收集,通過輸入光纖耦合到光譜儀的入射狹縫中,光譜數據通過數據採集控制器傳輸到計算機, 研究該光譜就可以分析計算出被測物質的成分與濃度[14]。原子光譜和離子光譜的波長與特定元素是一一對應的,而且光譜信號強度與對應元素的含量具有一定的定量關系。因此該技術可以實時、快速地現化學元素的定性和定量分析[15]。
激光誘導擊穿光譜可以真正做到現場快速分析,無須進行樣品預處理,分析方便,也不受研究對象的限制[16]。但是,其測量儀器成本較高,激光脈沖能量的起伏性,樣品的不均勻性,樣品的特性會直接影響測量的穩定性,也就是說研究樣品的特性對結果的精確性影響較大[17]。
在激光誘導擊穿光譜土壤重金屬污染物檢測的研究中,在光源設計上採用光學反饋減少脈沖間能量波動,在數據處理上採用一系列激光能量起伏歸一化校正技術,達到克服由於激光器能量起伏造成的影響;通過選擇最佳的采樣延遲時間,以保證所採集到信號譜的信噪比最大;選擇合適的激光脈沖的峰值功率閾值, 達到克服譜線飽和現象和避免自吸收效應的發生以獲得多元素的同時分析;通過研究激光聚焦焦點與樣品表面之間的距離與測得信號譜線的信噪比的關系,達到提
高系統的信噪比。通過以上措施克服上述不利影響,實現了利用LIBS 技術對土壤中Cd, Hg,As,Cr,Cu,Zn,Ni,Pb 等成分的同時測量。
2.5 X射線熒光光譜法
X射線熒光光譜技術是一種利用樣品對X射線的吸收隨樣品中的成分及其多少變化而變化來定性或定量測定樣品中成分的方法[18]。
X射線熒光光譜儀在結構上基本由激發樣品的光源、色散、探測、譜儀控制和數據處理等幾部分組成。該X射線熒光光譜法和電感耦合等離子體質譜法、發射光譜法在元素分析結果之間的差異,結果顯示它們的差異不顯著。從檢出限、准確度、精密度和回收率方面均能滿足實驗要求[19]。
土壤重金屬X射線熒光光譜非標樣測試方法具有前處理簡單,無需標准樣品,對樣品無污染、無破壞性,檢測速度快、穩定性高、再現性好等優點[20]。此方法是對土壤重金屬檢測和污染評價快速有效的方法。完全能夠滿足土壤環境受到污染時急需的快速定性、定量排查土壤中有毒有害重金屬元素的要求。 3.總結
土壤重金屬檢測是一項長期的工作,要求各種檢測手段向更高靈敏度、更高選擇性、更方便快捷的方向發展,不斷推出新的方法來解決遇到的新的分析問題。上述5種重金屬的檢測方法的優缺點如表Ⅰ。隨著各種分析方法的建立和科學技術的不斷進步,分析儀器逐漸由簡單化向復雜化的方向發展,可以預見,各種分析儀器會向多功能、自動化、智能化以及小型化的方向發展,並且檢測精度、靈敏度得到一定的提高,使得土壤環境檢測變得更加簡單准確。