A. 初中數學證明題解題思路
初中數學輔助線添加大全
人們從來就是用自己的聰明才智創造條件解決問題的,當問題的條件不夠時,添加輔助線構成新圖形,形成新關系,使分散的條件集中,建立已知與未知的橋梁,把問題轉化為自己能解決的問題,這是解決問題常用的策略。
一.添輔助線有二種情況:
1.按定義添輔助線:
如證明二直線垂直可延長使它們,相交後證交角為90埃?SPAN style="FONT-SIZE: 10.5pt; COLOR: black; FONT-FAMILY: 宋體; LETTER-SPACING: 0.4pt">證線段倍半關系可倍線段取中點或半線段加倍;證角的倍半關系也可類似添輔助線。
2.按基本圖形添輔助線:
每個幾何定理都有與它相對應的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」!這樣可防止亂添線,添輔助線也有規律可循。舉例如下:
(1)平行線是個基本圖形:
當幾何中出現平行線時添輔助線的關鍵是添與二條平行線都相交的等第三條直線
(2)等腰三角形是個簡單的基本圖形:
當幾何問題中出現一點發出的二條相等線段時往往要補完整等腰三角形。出現角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。
(3)等腰三角形中的重要線段是個重要的基本圖形:
出現等腰三角形底邊上的中點添底邊上的中線;出現角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。
(4)直角三角形斜邊上中線基本圖形
出現直角三角形斜邊上的中點往往添斜邊上的中線。出現線段倍半關系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。
(5)三角形中位線基本圖形
幾何問題中出現多個中點時往往添加三角形中位線基本圖形進行證明當有中點沒有中位線時則添中位線,當有中位線三角形不完整時則需補完整三角形;當出現線段倍半關系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形;當出現線段倍半關系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。
(6)全等三角形:
全等三角形有軸對稱形,中心對稱形,旋轉形與平移形等;如果出現兩條相等線段或兩個檔相等角關於某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或將三角形沿對稱軸翻轉。當幾何問題中出現一組或兩組相等線段位於一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結或過二端點添平行線
(7)相似三角形:
相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉型;當出現相比線段重疊在一直線上時(中點可看成比為1)可添加平行線得平行線型相似三角形。若平行線過端點添則可以分點或另一端點的線段為平行方向,這類題目中往往有多種淺線方法。
(8)特殊角直角三角形
當出現30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進行證明
(9)半圓上的圓周角
出現直徑與半圓上的點,添90度的圓周角;出現90度的圓周角則添它所對弦---直徑;平面幾何中總共只有二十多個基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一樣。
二.基本圖形的輔助線的畫法
1.三角形問題添加輔助線方法
方法1:有關三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題。
方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題。
方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理。
方法4:結論是一條線段與另一條線段之和等於第三條線段這類題目,常採用截長法或補短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等於第一條線段,而另一部分等於第二條線段。
2.平行四邊形中常用輔助線的添法
平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質,所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:
(1)連對角線或平移對角線:
(2)過頂點作對邊的垂線構造直角三角形
(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線
(4)連接頂點與對邊上一點的線段或延長這條線段,構造三角形相似或等積三角形。
(5)過頂點作對角線的垂線,構成線段平行或三角形全等.
3.梯形中常用輔助線的添法
梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:
(1)在梯形內部平移一腰。
(2)梯形外平移一腰
(3)梯形內平移兩腰
(4)延長兩腰
(5)過梯形上底的兩端點向下底作高
(6)平移對角線
(7)連接梯形一頂點及一腰的中點。
(8)過一腰的中點作另一腰的平行線。
(9)作中位線
當然在梯形的有關證明和計算中,添加的輔助線並不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關鍵。
4.圓中常用輔助線的添法
在平面幾何中,解決與圓有關的問題時,常常需要添加適當的輔助線,架起題設和結論間的橋梁,從而使問題化難為易,順其自然地得到解決,因此,靈活掌握作輔助線的一般規律和常見方法,對提高學生分析問題和解決問題的能力是大有幫助的。
(1)見弦作弦心距
有關弦的問題,常作其弦心距(有時還須作出相應的半徑),通過垂徑平分定理,來溝通題設與結論間的聯系。
(2)見直徑作圓周角
在題目中若已知圓的直徑,一般是作直徑所對的圓周角,利用"直徑所對的圓周角是直角"這一特徵來證明問題。
(3)見切線作半徑
命題的條件中含有圓的切線,往往是連結過切點的半徑,利用"切線與半徑垂直"這一性質來證明問題。
(4)兩圓相切作公切線
對兩圓相切的問題,一般是經過切點作兩圓的公切線或作它們的連心線,通過公切線可以找到與圓有關的角的關系。
(5)兩圓相交作公共弦
對兩圓相交的問題,通常是作出公共弦,通過公共弦既可把兩圓的弦聯系起來,又可以把兩圓中的圓周角或圓心角聯系起來。
作輔助線的方法
一:中點、中位線,延線,平行線。
如遇條件中有中點,中線、中位線等,那麼過中點,延長中線或中位線作輔助線,使延長的某一段等於中線或中位線;另一種輔助線是過中點作已知邊或線段的平行線,以達到應用某個定理或造成全等的目的。
二:垂線、分角線,翻轉全等連。
如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,並藉助其他條件,而旋轉180度,得到全等形,,這時輔助線的做法就會應運而生。其對稱軸往往是垂線或角的平分線。
三:邊邊若相等,旋轉做實驗。
如遇條件中有多邊形的兩邊相等或兩角相等,有時邊角互相配合,然後把圖形旋轉一定的角度,就可以得到全等形,這時輔助線的做法仍會應運而生。其對稱中心,因題而異,有時沒有中心。故可分「有心」和「無心」旋轉兩種。
四:造角、平、相似,和、差、積、商見。
如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關。在製造兩個三角形相似時,一般地,有兩種方法:第一,造一個輔助角等於已知角;第二,是把三角形中的某一線段進行平移。故作歌訣:「造角、平、相似,和差積商見。」
五:兩圓若相交,連心公共弦。
如果條件中出現兩圓相交,那麼輔助線往往是連心線或公共弦。
六:兩圓相切、離,連心,公切線。
如條件中出現兩圓相切(外切,內切),或相離(內含、外離),那麼,輔助線往往是連心線或內外公切線。
七:切線連直徑,直角與半圓。
如果條件中出現圓的切線,那麼輔助線是過切點的直徑或半徑使出現直角;相反,條件中是圓的直徑,半徑,那麼輔助線是過直徑(或半徑)端點的切線。即切線與直徑互為輔助線。
如果條件中有直角三角形,那麼作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條件中有半圓,那麼在直徑上找圓周角——直角為輔助線。即直角與半圓互為輔助線。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。
如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。
如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反之,亦成立。
有時,圓周角,弦切角,圓心角,圓內角和圓外角也存在因果關系互相聯想作輔助線。
九:面積找底高,多邊變三邊。
如遇求面積,(在條件和結論中出現線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關鍵。
如遇多邊形,想法割補成三角形;反之,亦成立。
另外,我國明清數學家用面積證明勾股定理,其輔助線的做法,即「割補」有二百多種,大多數為「面積找底高,多邊變三邊」。
B. 數學的初中證明題怎麼學好
證明題有三種思考方式
正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
C. 怎麼學好初中幾何證明題分析與訓練
初中幾何證明的分析與訓練不是一篇文章或幾節課能夠說明清楚的,需要通過大量的配套題目加以說明。下面提供一些想法供參考:
分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
D. 做數學證明題的思路是什麼,過程怎麼寫
1. 弄清題意
如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵。命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論
2、根據題意,畫出圖形。
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。並且把題中已知的條件,能標在圖形上的盡量標在圖形上。
3. 根據題意與圖形,用數學的語言與符號寫出已知和求證。
眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示。
4. 分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考。
(2)逆向思維。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路。
5. 根據證明的思路,用數學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上。這個過程,對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據!
6. 檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵。最後,同學們在平時練習中要敢於嘗試,多分析,多總結。才能做到熟能生巧!
E. 做數學的證明題,基本的思路和步驟是什麼
你這話問得本身說明你對證明題有很大的誤區,就初等數學而言,證明題大致可分幾何證明,代數證明。亦可分為概念型證明(對這個能理清的,大凡都不簡單,不過現行的教材都淺嘗輒止,很少遇見!),推導型證明。幾何證明很多看起來那簡直非人所想,所以很難說有基本的思路和步驟,尤其那神奇的輔助線!這也是幾何原本的魅力。但要做到基本,還是回歸到基礎概念,什麼中位線,平行線,三角形四心等。我只能說這要看你的積累了,別無他法。當然解析幾何和向量的出現在一定程度上簡化了這種思維過程,不過計算又復雜了!此事古難全!有時還會是兩者的結合!代數證明有時顯得很單純,主要可從綜合法和分析法(反推),反證法考慮,特殊點數學歸納法,對1,0兩個數的妙用。平方數的妙用。當然因數分解,那更要熟練掌握(令人遺憾的是現在改得太簡單了!)等。說句廢話就是因題而異。
接下來主要講下推導,說白了就是利用你所學的去證明另外一個命題,這對於大多數人顯得極其重要,這就要求你要對概念弄得徹底,和對題的積累,再加上上述的一些方法的訓練!做好了應試足矣!但是創新則顯得尤為不足!因而如果你想對數學理解的更深入,則要從概念的源處出發,看相關大家寫的論文和著作,並試著加以運用達到為自己所用,以求更大的創造。
F. 高中數學證明題思考方法
高中數學證明題思考方法:
1. 幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。 2. 掌握分析、證明幾何問題的常用方法:
(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
3. 掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
G. 初二數學證明題技巧
讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置.
要記.
這里的記有兩層意思.第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來.如給出對邊相等,就用邊相等的符號來表示;第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來.?
要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論,然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習.?
對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生.
2初中數學證明題的解題技巧
(一)分析
在教學過程中指導學生用教學方法中的分析法,從而一步步對證明思路進行探究。教師可以用那種提問的方式來指導學生,學生會在教師的指導下經過認真的分析、思考、比較等進行問題的解決。然而,關於證明題的相關分析,有以下三種思考方式:1. 正向思維。對於那種相對來說比較簡單的題目,我們可以通過正向對其解題思路進行考慮,這樣可以輕而易舉的做出相關題目。2. 逆向思維。也就是說,在進行思路分析時,要從相反的方向進行問題的思考,運用這種逆向思維進行解題,可以使學生從不同角度來思考問題,探索解題方法,從而拓寬解題思路,這種逆向思維的方法是需要學生進行掌握的。
H. 做證明題有幾種方法
幾何證明主要有以下幾種方法:
1、正向思維
所謂正向思維,也就是通過已知推未知,根據題目中所給出的一直條件,在大腦中形成一個系統的框架,最終解答出題目所要求的答案,
2、逆向思維
逆向思維也就是從相反的方向思考問題,逆向思維是做幾何證明題的一個比較重要的方式,能夠拓寬學生的思路,從不同的方向尋找問題的答案,根據題目,結合所給的條件,思考還缺少什麼條件,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
3、正逆結合
對於從結論中很難分析出思路的那種題目,可以結合已知條件進行分析,對於幾何證明題來說,題目中所給出的已知條件都是在證明中會用到的,比如:想要證明角平分線,就要找到相等的兩個角,正逆結合的思路是證明題中比較常用的......
注意:在做幾何證明題的時候,書寫很重要,由於幾何證明題中,涉及到的公式較多,所以,好的寫會讓你的卷面看起來很工整,而不好的書寫,會讓卷子看起來很混亂,並且很容易造成閱卷老師的反感,還會發生找不到答案的情況,所以,為了能夠多拿分,書寫工整,是非常必要的~~
正確的書寫示範:
同學們可以模仿這種書寫方式,保持解題前後步驟左對齊,等號對齊,會讓整個解題步驟看起來更加易懂,
:
而像這種書寫方式,即使最後的答案是正確的,但是看起來會非常的混亂,整體缺少美感,會讓閱卷老師覺得看起來非常頭疼,人家自然也就不願意花費太多的時間去找你的答案。
期末考試即將到來,同學們一定要記住,在做期末試卷的時候,要保持卷面工整,多拿分,
I. 幾何證明題分析的方法有幾種
幾何證明題分析的方法一般有分析法與綜合法兩種。
分析法:從已知入手,逐步推向結論。
綜合法:從結論出發,逐步推向已知。
J. 怎麼做好幾何證明題
平面幾何難學,是很多初中生在學習中的共識,這裡麵包含了很多主觀和客觀因素,而學習不得法,沒有適當的解題思路則是其中的一個重要原因。波利亞曾說過,「解題的成功要靠正確思路的選擇,要靠從可以接近它的方向去攻擊堡壘。為了辨別哪一條思路正確,哪一個方向可接近它,就要試探各種方向和思路。」由此可見,掌握證明題的一般思路、探索證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。常見的證題思路有直接式思路和間接式思路。
一、直接式思路
證題時,首先應仔細審查題意,細心觀察題目,分清條件和結論,並盡量挖掘題目中隱含的一些解題信息,以在縝密審題的基礎上,根據定義、公式、定理進行一系列正面的邏輯推理,最後得出命題的證明,這種證題的思路被稱為直接式思路。由於思維方式的逆順,在證題時運用的方法主要有「分析法」和「綜合法」。
1.分析法。分析法是從命題的結論入手,先承認它是正確的,執果索因,尋求結論正確的條件,這樣一步一步逆而推之,直到與題設會合,於是就得出了由題設通往結論的思維過程。在由結論向已知條件的尋求追溯過程中,則由於題設條件的不同,或已知條件之間關系的隱含程度不同等,尋求追溯的形式會有一定差異,因而常把分析法分為以下四種類型。
(1)選擇型分析法。選擇型分析法解題,首先要從題目要求解的結論A出發,逐步把問題轉化為分析要得出結論A需要哪些充分條件。假設有條件B,就有結論A,那麼B就成為選擇找到的使A成立的充分條件,然後再分析在什麼條件下能選擇得到B……最終追溯到命題中的某一題設條件。
(2)可逆型分析法。如果再從結論向已知條件追溯的過程中,每一步都是推求的充分必要條件,那麼這種分析法又叫可逆型分析法,因而,可逆型分析法是選擇型分析法的特殊情形。用可逆型分析法證明的命題用選擇型分析法一定能證明,反之用選擇型分析法證明的命題,用可逆型分析不一定能證明。
(3)構造型分析法。如果在從結論向已知條件追溯的過程中,在尋找新的充分條件的轉化「三岔口」處,需採取相應的構造型措施:如構造一些條件,作某些輔助圖等,進行探討、推導,才能追溯到原命題的已知條件的分析法叫做構造型分析法。
(4)設想型分析法。在向已知條件追溯的過程中,藉助於有根據的設想、假定,形成「言之成理」的新構思,再進行「持之有據」的驗證,逐步地找出正確途徑的分析法稱為設想型分析法。
2.綜合法。綜合法則是由命題的題設條件入手,由因導果,通過一系列的正確推理,逐步靠近目標,最終獲得結論。再從已知條件著手,根據已知的定義、公式、定理,逐步推導出結論。在這一過程中,由於思考角度不同,立足點不同,綜合法常分為四種類型:
(1)分析型綜合法。我們把分析法解題的敘述倒過來,稍加整理而得到的解法稱為分析型綜合法。
(2)奠基型綜合法。當由已知條件著手較難,或沒有熟悉的模式可供歸納推導,就可轉而尋找簡單的模式,然後再將一般情形化歸到這個簡單的模式中來,這樣的綜合法稱為奠基型綜合法。
(3)媒介型綜合法。當問題給出的已知條件較少,且看不出與所求結論的直接聯系時,或條件關系鬆散且難以利用時,就要去有意識地尋找、選擇並應用媒介實現過渡,這樣的綜合法就稱之為媒介型綜合法。
(4)解析型綜合法。解題時,運用解析法的思想制定解題的大體計劃和方向,然後並不真用解析法來實現這個計劃,而用綜合法來實現,這種綜合法被稱為解析型綜合法。
在具體證題時,這兩種方法可單獨運用,也可配合運用,在分析中有綜合,在綜合中有分析,以進行交叉使用。
二、間接式思路
有些命題往往不易甚至不能直接證明,這時,不妨證明它的等效命題,以間接地達到目標,這種證題思路就稱為間接式思路。我們常運用的反證法、同一法證題就是兩種典型的用間接式思路證題的方法。
1.反證法。具體地說,在證明一個命題時,如正面不易入手,就要從命題結論的反面入手,先假設結論的反面成立,如果由此假設進行嚴格推理,推導出的結果與已知條件、公式、定理、定義、假設等的其中一個相矛盾,或者推出兩個相互矛盾的結果,就證明了「結論反面成立」的假設是錯誤的,從而得出結論的正面成立,這種證題方法就叫做反證法。當結論的反面只有一個時,否定了這一個便完成證明,這種較單純的反證法又叫做歸謬法;而當結論的反面有若干個時,就必須駁倒其中的每一個,這種較繁瑣的反證法又稱為窮舉法。
反證法證題通常有如下三個步驟:
(1)反設。作出與結論相反的假設,通常稱這種假設為反證假設。
(2)歸謬。利用反證假設和已知條件,進行符合邏輯的推理,推出與某個已知條件、公理、定義等相矛盾的結果。根據矛盾律,在推理和論證的過程中,在同時間、同關系下,不能對同一對象作出兩個相反的論斷,可知反證假設不成立。
(3)得出結論。根據排除率,即在同一論證過程中,命題C與命題非C有且僅有一個是正確的,可知原結論成立。
2.同一法。欲證某圖形具有某種性質而又比較繁雜或不易直接證明時,有時可以作出具有所示性質的圖形,然後證明所作的圖形與所給的某圖形就是同一個,由此把它們等同起來,這種證法叫做同一法。
例如,同一法證平面幾何問題的步驟如下:作出符合命題結論的圖形;證明所作圖形符合已知條件;根據唯一性,確定所作的圖形與已知圖形吻合;斷定命題的真實性。
同一法和反證法都是間接式思路的方法。其中,同一法的局限性較大,通常只適合於符合同一原理的命題;反證法的適用范圍則廣泛一些,能夠用反證法證明的命題,不一定能用同一法論證,但對於能夠用同一法證明的命題,一般都能用反證法加以證明。
在證題過程中,不論是直接思路還是間接思路,都要進行一系列正確的推理,需要解題者對撲朔迷離的表象進行由表及裡、去偽存真地分析、加工和改造,並從不同方向探索,以在廣闊的范圍內選擇思路,從而及時糾正嘗試中的錯誤,最後獲得命題的證明。