㈠ 大數據分析的基本方法有哪些
1.可視化分析
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. 數據挖掘演算法
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. 預測性分析能力
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. 語義引擎
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5. 數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
何為數據可視化?
這里主要是指工作場景中的數據可視化(海報類、信息圖不在范圍內)。
數據可視化就是承接數據分析之後的數據展示,包括圖表設計、動效組合,形成二維圖表,三維視圖、聯動鑽取,搭配成大屏……
數據可視化的功能主要體現在兩個方面:一是數據展示;二是業務分析。數據展示很好理解,就是將已知的數據或數據分析結果通過可視化圖表的方式進行展示,形成報表、看板、dashboard、甚至配合現在流行的大屏展示技術,數據展示的方式也越來越為人所接受和歡迎。業務分析就是在看到圖表、dashboard、大屏之後,將所分析的度量和數據有效地轉化為有商業價值的見解,使其能夠為基於事實所做的決策提供支持。
數據可視化的工具
對於數據可視化,有諸多工具,如:
1、圖表類插件:ECharts、Highcharts、D3js等功能都十分強大。
2、數據報表類:Excel、金蝶、FineReport等,對於日常的報表製作,易學實用。
3、可視化BI類:比如cognos、tableau等,更直接地針對業務分析。
以上,前兩者是純粹的可視化圖標,後兩者涵蓋從數據採集、分析、管理、挖掘、可視化在內的一系列復雜數據處理。
如何實現可靠的數據可視化?
數據可視化最終還要回歸到「閱讀者」,通過傳遞有指向性的數據,找出問題所在,制定正確決策。所以數據的價值不在於被看到,而在於看到之後所引起的思考和行動。
這里,企業內數據還不同於普通的應用數據,它們大多不是通過演算法程序直接產生價值應用於用戶,而是通過合理的展示和分析,再經應用者或管理者思考和判斷,最後採取行動,從而發揮價值。
1、誰是可視化的受益者
無論你在做一份傳統的報表,匯報的PPT還是其他,首先需要搞清楚這是給誰看的,他需要了解哪些事項,關注那些指標,在決策過程中會如何利用你展示的信息和數據,一句話概括就是搞清楚數據分析工作的目標,這一張報表是用來做什麼的。後續的數據分析工作和分析報告里所要呈現的全部內容,之後都是要緊緊圍繞著這個目標主題而服務的。
2、梳理指標體系
數據可視化是要講繁雜的各條數據,梳理成指標,圍繞每個業務財務、銷售、供應鏈、生產等形成指標體系,最後通過可視化的方式展現,比如回款率、收益效率….
可以說,數據分析工作是否成功,大體就在指標的梳理。這個工作需要數據中心的人員或者BI組的人員深入業務一線去調研需求,拉來數據,建好數倉….
【指標體系分享】
如何針對業務場景做數據分析-零售業管理指標
數據化管理的指標體系大全(一),店鋪與銷售
數據化管理的指標體系大全(二),商品、電商、戰略決策
分析生產和庫存,靠這一套指標就夠了!
將數據可視化與業務方案結合起來
㈢ 數據可視化的方法有哪些
數據可視化就是將數據分析的結果用圖表的形式展現出來。
可以實現數據可視化的工具有:Excel、報表、BI
圖表的展現形式有:柱狀圖、條形圖、折線圖、餅圖、雷達圖、地圖、漏斗圖、儀錶板圖、散點圖、桑基圖、詞雲和矩形樹圖等各種各種圖形。
以下展示幾張通過觀遠數據BI平台做的數據可視化大屏:
㈣ 數據可視化常用的方式有哪些
一、面積&尺寸可視化
對同一類圖形(例如柱狀、圓環和蜘蛛圖等)的長度、高度或面積加以區別,來清晰的表達不同目標對應的目標值之間的比照。
這種辦法會讓閱讀者對數據及其之間的比照一目瞭然。製作這類數據可視化圖形時,要用數學公式核算,來表達准確的標准和份額。
二、顏色可視化
經過顏色的深淺來表達目標值的強弱和巨細,是數據可視化規劃的常用辦法,用戶一眼看上去便可全體的看出哪一部分目標的數據值更突出。
三、圖形可視化
在咱們規劃目標及數據時,使用有對應實際含義的圖形來結合呈現,會使數據圖表愈加生動的被展示,更便於用戶了解圖表要表達的主題。
四、地域空間可視化
當目標數據要表達的主題跟地域有關聯時,咱們一般會挑選用地圖為大布景。
這樣用戶能夠直觀的了解全體的數據情況,同時也能夠依據地理位置快速的定位到某一區域來查看詳細數據。
五、概念可視化
經過將籠統的目標數據轉換成咱們熟悉的簡單感知的數據時,用戶便更簡單了解圖形要表達的意義。
關於數據可視化常用的方式有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈤ 大數據可視化分析步驟有哪些
一、需求分析
需求分析是大數據可視化項目開展的前提,要描述項目背景與目的、業務目標、業務范圍、業務需求和功能需求等內容,明確實施單位對可視化的期望和需求。包括需要分析的主題、各主題可能查看的角度、需要發泄企業各方面的規律、用戶的需求等內容。
二、建設數據倉庫/數據集市的模型
數據倉庫/數據集市的模型是在需求分析的基礎上建立起來的。數據倉庫/數據集市建模除了資料庫的ER建模和關系建模,還包括專門針對數據倉庫的維度建模技術。
三、數據抽取、清洗、轉換、載入(ETL)
數據抽取是指將數據倉庫/集市需要的數據從各個業務系統中抽離出來,因為每個業務系統的數據質量不同,所以要對每個數據源建立不同的抽取程序,每個數據抽取流程都需要使用介面將元數據傳送到清洗和轉換階段。
數據清洗的目的是保證抽取的原數據的質量符合數據倉庫/集市的要求並保持數據的一致性。數據轉換是整個ETL過程的核心部分,主要是對原數據進行計算和放大。數據載入是按照數據倉庫/集市模型中各個實體之間的關系將數據載入到目標表中。
四、建立可視化場景
建立可視化場景是對數據倉庫/集市中的數據進行分析處理的成果,用戶能夠藉此從多個角度查看企業/單位的運營狀況,按照不同的主題和方式探查企業/單位業務內容的核心數據,從而作出更精準的預測和判斷。
關於大數據可視化分析步驟有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈥ 數據分析之常見的數據可視化方法有哪些
【導讀】現如今已然是大數據時代,許多企業的發展離不開數據分析。大數據可視化分為不同的類型:探索型和解釋型。勘探類型幫助人們發現數據背後的故事,而解析數據方便給人們看。那麼,在數據分析中,常見的數據可視化方法有哪些呢?今天就跟隨小編一起來了解下吧!
時態
時態可視化是數據以線性的方式展示。最為關鍵的是時態數據可視化有一個起點和一個終點。時態可視化的一個例子可以是連接的散點圖,顯示諸如某些區域的溫度信息。
多維
可以通過使用常用的多維方法來展示目前二維或高維度的數據。多維的展示使得效果更加多元化,滿足企業的需求。
分層
分層方法用於呈現多組數據。這些數據可視化通常展示的是大群體裡面的小群體。分層數據可視化的例子包括一個樹形圖,可以顯示語言組。
網路
在網路中展示數據間的關系,它是一種常見的展示大數據量的方法。結構較為復雜。
以上就是小編今天給大家整理分享關於「數據分析之常見的數據可視化方法有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
㈦ 常用的數據分析方法有哪些
①對比分析法通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。
②分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
③預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
④漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
⑤AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
㈧ 我們可以用哪些工具做大數據可視化分析
通過互聯網行技術的不斷突破,數據可視化分析不僅僅是通過編碼才能實現的簡單的靜態分析展現,而涌現了大批的數據可視化工具。
今天就來講講數據可視化吧,我來推薦一些實用的數據可視化工具,這些工具包含:
專業的大數據分析工具
各種Python數據可視化第三方庫
其它語言的數據可視化框架
一、專業的大數據分析工具
1、FineReport
FineReport是一款純Java編寫的、集數據展示(報表)和數據錄入(表單)功能於一身的企業級web報表工具,它「專業、簡捷、靈活」的特點和無碼理念,僅需簡單的拖拽操作便可以設計復雜的中國式報表,搭建數據決策分析系統。
來看看它做的dashboard吧:
㈨ 做數據分析想要達到數據可視化效果,怎麼弄
可以藉助數據可視化分析軟體呀。如果數據太多,不好好的做數據可視化分析根本無法判斷好壞;沒有達到數據可視化的話,很多問題容易被隱藏。數據可視化分析一般通過儀表盤、柱狀圖、折線圖以及各類圖表的展現,以更易理解的方式來詮釋數據之間的復雜關系和發展趨勢,以便更好地利用數據分析結果。——奧 威 BI 好 用
可以看看
㈩ 數據可視化的基本流程
作者 | 向倩文
來源 | 數據產品手記
大多數人對數據可視化的第一印象,可能就是各種圖形,比如Excel圖表模塊中的柱狀圖、條形圖、折線圖、餅圖、散點圖等等,就不一一列舉了。以上所述,只是數據可視化的具體體現,但是數據可視化卻不止於此。
數據可視化不是簡單的視覺映射,而是一個以數據流向為主線的一個完整流程,主要包括數據採集、數據處理和變換、可視化映射、用戶交互和用戶感知。一個完整的可視化過程,可以看成數據流經過一系列處理模塊並得到轉化的過程,用戶通過可視化交互從可視化映射後的結果中獲取知識和靈感。
圖1 可視化的基本流程圖
可視化主流程的各模塊之間,並不僅僅是單純的線性連接,而是任意兩個模塊之間都存在聯系。例如,數據採集、數據處理和變換、可視化編碼和人機交互方式的不同,都會產生新的可視化結果,用戶通過對新的可視化結果的感知,從而又會有新的知識和靈感的產生。
下面,對數據可視化主流程中的幾個關鍵步驟進行說明。
01
數據採集
數據採集是數據分析和可視化的第一步,俗話說「巧婦難為無米之炊」,數據採集的方法和質量,很大程度上就決定了數據可視化的最終效果。
數據採集的分類方法有很多,從數據的來源來看,可以分為內部數據採集和外部數據採集。
1.內部數據採集:
指的是採集企業內部經營活動的數據,通常數據來源於業務資料庫,如訂單的交易情況。如果要分析用戶的行為數據、APP的使用情況,還需要一部分行為日誌數據,這個時候就需要用「埋點」這種方法來進行APP或Web的數據採集。
2.外部數據採集:
指的數通過一些方法獲取企業外部的一些數據,具體目的包括,獲取競品的數據、獲取官方機構官網公布的一些行業數據等。獲取外部數據,通常採用的數據採集方法為「網路爬蟲」。
以上的兩類數據採集方法得來的數據,都是二手數據。通過調查和實驗採集數據,屬於一手數據,在市場調研和科學研究實驗中比較常用,不在此次探討范圍之內。
02
數據處理和變換
數據處理和數據變換,是進行數據可視化的前提條件,包括數據預處理和數據挖掘兩個過程。
一方面,通過前期的數據採集得到的數據,不可避免的含有雜訊和誤差,數據質量較低;另一方面,數據的特徵、模式往往隱藏在海量的數據中,需要進一步的數據挖掘才能提取出來。
常見的數據質量問題包括:
1.數據收集錯誤,遺漏了數據對象,或者包含了本不應包含的其他數據對象。
2.數據中的離群點,即不同於數據集中其他大部分數據對象特徵的數據對象。
3.存在遺漏值,數據對象的一個或多個屬性值缺失,導致數據收集不全。
4.數據不一致,收集到的數據明顯不合常理,或者多個屬性值之間互相矛盾。例如,體重是負數,或者所填的郵政編碼和城市之間並沒有對應關系。
5.重復值的存在,數據集中包含完全重復或幾乎重復的數據。
正是因為有以上問題的存在,直接拿採集的數據進行分析or可視化,得出的結論往往會誤導用戶做出錯誤的決策。因此,對採集到的原始數據進行數據清洗和規范化,是數據可視化流程中不可缺少的一環。
數據可視化的顯示空間通常是二維的,比如電腦屏幕、大屏顯示器等,3D圖形繪制技術解決了在二維平面顯示三維物體的問題。
但是在大數據時代,我們所採集到的數據通常具有4V特性:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值)。如何從高維、海量、多樣化的數據中,挖掘有價值的信息來支持決策,除了需要對數據進行清洗、去除雜訊之外,還需要依據業務目的對數據進行二次處理。
常用的數據處理方法包括:降維、數據聚類和切分、抽樣等統計學和機器學習中的方法。
03
可視化映射
對數據進行清洗、去噪,並按照業務目的進行數據處理之後,接下來就到了可視化映射環節。可視化映射是整個數據可視化流程的核心,是指將處理後的數據信息映射成可視化元素的過程。
可視化元素由3部分組成:可視化空間+標記+視覺通道
1.可視化空間
數據可視化的顯示空間,通常是二維。三維物體的可視化,通過圖形繪制技術,解決了在二維平面顯示的問題,如3D環形圖、3D地圖等。
圖2 可視化空間示例
2.標記
標記,是數據屬性到可視化幾何圖形元素的映射,用來代表數據屬性的歸類。
根據空間自由度的差別,標記可以分為點、線、面、體,分別具有零自由度、一維、二維、三維自由度。如我們常見的散點圖、折線圖、矩形樹圖、三維柱狀圖,分別採用了點、線、面、體這四種不同類型的標記。
圖3 標記類型示例
3.視覺通道
數據屬性的值到標記的視覺呈現參數的映射,叫做視覺通道,通常用於展示數據屬性的定量信息。
常用的視覺通道包括:標記的位置、大小(長度、面積、體積...)、形狀(三角形、圓、立方體...)、方向、顏色(色調、飽和度、亮度、透明度...)等。
圖3中的四個圖形示例,就很好的利用了位置、大小、顏色等視覺通道來進行數據信息的可視化呈現。
「標記」、「視覺通道」是可視化編碼元素的兩個方面,兩者的結合,可以完整的將數據信息進行可視化表達,從而完成可視化映射這一過程。
關於可視化編碼元素的優先順序,以及如何根據數據的特徵選擇合適的可視化表達,下次會專題來分享下。
04
人機交互
可視化的目的,是為了反映數據的數值、特徵和模式,以更加直觀、易於理解的方式,將數據背後的信息呈現給目標用戶,輔助其作出正確的決策。
但是通常,我們面對的數據是復雜的,數據所蘊含的信息是豐富的。
如果在可視化圖形中,將所有的信息不經過組織和篩選,全部機械的擺放出來,不僅會讓整個頁面顯得特別臃腫和混亂,缺乏美感;而且模糊了重點,分散用戶的注意力,降低用戶單位時間獲取信息的能力。
常見的交互方式包括:
1.滾動和縮放:當數據在當前解析度的設備上無法完整展示時,滾動和縮放是一種非常有效的交互方式,比如地圖、折線圖的信息細節等。但是,滾動與縮放的具體效果,除了與頁面布局有關系外,還與具體的顯示設備有關。
2.顏色映射的控制:一些可視化的開源工具,會提供調色板,如D3。用戶可以根據自己的喜好,去進行可視化圖形顏色的配置。這個在自助分析等平台型工具中,會相對多一點,但是對一些自研的可視化產品中,一般有專業的設計師來負責這項工作,從而使可視化的視覺傳達具有美感。
3.數據映射方式的控制:這個是指用戶對數據可視化映射元素的選擇,一般一個數據集,是具有多組特徵的,提供靈活的數據映射方式給用戶,可以方便用戶按照自己感興趣的維度去探索數據背後的信息。這個在常用的可視化分析工具中都有提供,如tableau、PowerBI等。
4.數據細節層次控制:比如隱藏數據細節,hover或點擊才出現。
05
用戶感知
可視化的結果,只有被用戶感知之後,才可以轉化為知識和靈感。
用戶在感知過程,除了被動接受可視化的圖形之外,還通過與可視化各模塊之間的交互,主動獲取信息。
如何讓用戶更好的感知可視化的結果,將結果轉化為有價值的信息用來指導決策,這個裡面涉及到的影響因素太多了,心理學、統計學、人機交互等多個學科的知識。
學習之路漫漫,一直在路上, 我們會持續分享數據可視化領域的知識,記得持續follow我們喲!