導航:首頁 > 研究方法 > 遙感的論文研究方法

遙感的論文研究方法

發布時間:2022-04-14 03:33:59

⑴ 遙感信息處理論文怎麼寫啊

遙感圖像信息處理的主要目的是:①消除各種輻射畸變和幾何畸變,使經過處理後的圖像能更真實地表現原景物真實面貌;②利用增強技術突出景物的某些光譜和空間特徵,使之易於與其它地物的區分和判釋;③進一步理解、分析和判別經過處理後的圖像,提取所需要的專題信息。遙感信息處理分為模擬處理和數字處理兩類(見數據採集和處理)。

模擬處理方法是首先把圖像信息轉換成電信號,然後進行圖像化處理。用模擬方法能對圖像信息作快速處理。數字處理是對遙感圖像信息作數字離散化後,利用數字計算機進行處理。數字圖像處理的功能好而且靈活,已成為遙感信息處理的主要方式,但要求有高速度大容量的計算機,不易達到實時處理的要求。

⑵ 遙感技術在城市規劃中的應用的研究現狀和研究方法

推薦去CNKI,清華搞的,那裡面是論文資料庫,可以隨時下載的。你要搞不定的話,去淘寶的//翰林書店//,那裡能下載到論文的

⑶ 遙感方法應用研究和有效性評價

(一)遙感工作方法及工作層次概述

本次遙感地質研究工作區主要是鳳-太礦集區。工作方法為:充分應用不同遙感數據源進行遙感數字圖像處理、遙感地質解譯、遙感蝕變信息提取、遙感信息的GIS技術分析等; 通過礦集區1:5萬層次、礦區1:1萬層次的研究工作,總結研究區域鉛鋅礦及金礦等典型礦床的的遙感標志特徵,建立遙感找礦模型。

礦集區1:5萬層次遙感工作採用了光譜解析度較高的日本Aster數據,對鳳-太礦集區進行了遙感圖像處理、遙感地質解譯及近礦圍岩蝕變遙感信息提取等工作。技術重點是解決多光譜數據的彩色合成及融合問題,充分利用Aster多光譜數據的光譜特徵准確提取與礦有關的弱礦化蝕變以及使用GIS對遙感信息進行分析。

1:1萬層次遙感工作採用地面解析度較高的美國IKONOS衛星數據,對包括八方山鉛鋅礦、八卦廟金礦等在內的100km2范圍的遙感影像進行了處理,同時進行了地質解譯分析,並在該層次上從遙感角度對該區的鉛鋅礦找礦、金礦找礦提出了建議。技術難點是高解析度遙感數據的處理、數據融合及大比例尺遙感圖像的製作,以及大比例尺遙感圖像中微觀地質因素的解譯。

(二)鳳-太礦集區1:5萬層次遙感方法應用研究

1.數據概況

1:5萬層次遙感工作採用日本Aster數據,該數據具有3個15m解析度的可見光近紅外波段、6個30m解析度的短波紅外波段及5個90m解析度的熱紅外波段,單景面積60×60km2。與常用的TM/ETM數據相比,在地面解析度和光譜分辨方面有很大的提高。特別是短波紅外波段ETM的兩個波段被分為6個波段,理論上對羥基蝕變礦物的識別程度有了很大的提高(表4-17)。

表4-17 Aster數據與ETM數據光譜解析度及地面解析度對比

2.圖像處理

圖像處理在PCI geomatic 10.0及ENVI 4.0兩個專業遙感軟體平台上進行。工作區使用的數據時相為2004年4月19日,該時相無雪無雲,植被覆蓋相當少,數據質量總體良好。工作區成圖范圍為:106°27′52″~107°04′05″E,33°45′40″~34°01′36″N。

圖像處理過程經過圖像校正、圖像增強、彩色合成、數據融合等過程,其中,圖像校正使用1:5萬地形圖進行校正; 圖像增強主要進行了對比度擴展,使用適應性拉升對直方圖進行了擴展; 彩色合成及數據融合方案經對數據各種統計參數的分析及不同方案的反復對比,最終選擇了4(R)+8(G)+2(B)與2波段融合的方案,融合後圖像解析度提高為15m,並保留了假彩色合成的色彩(圖4-36)。

圖4-36 鳳-太礦集區Aster遙感影像圖

圖4-37 銀母寺鉛鋅礦床不同彩色合成方案效果對比

不同合成方案及融合效果對比見圖4-37(以銀母寺鉛鋅礦區為例)。由圖4-37可以看出,4(R)+8(G)+2(B)與2波段融合的方案在色彩及信息量上是最佳的; 完全使用最高解析度的123波段進行合成,圖像解析度最高但色彩信息量很差; 隨著高解析度波段在彩色合成中的減少,圖像解析度下降; 融合可以提高圖像解析度,同時保持較好的色彩信息。

3.地質解譯

(1)線性構造解譯

線性構造包括斷裂構造和線性影像體,斷裂構造在影像上具有明顯的構造標志,如斷層崖、連續直線狀三角面、水系突然轉折或分叉的連線、兩側影紋圖案截然突變的界線等; 線性影像體指影像中直線狀展布的線狀要素,多數情況下為構造信息的反映。遙感構造的解譯以圖像目視解譯為主,必要時輔以圖像處理手段,如以定向濾波、比值分析等來突出地貌上的線性影像。

鳳-太礦集區遙感線性構造比較發育,規模、性質不同,影像特徵有所不同,根據構造規模及影像特點可以劃分為4級。

1)一級遙感斷裂:一級遙感斷裂為區域性斷裂,如北部的唐藏-板房子斷裂(圖4-38),該斷裂構造控制著鳳-太礦集區的北邊界。遙感影像中斷裂構造標志清楚,兩側岩石地層差異大,影像紋形、色調也有明顯差別。

圖4-38 唐藏-板房子斷裂典型遙感影像

2)二級遙感斷裂:二級遙感斷裂主要為泥盆系地層中岩性軟、硬接觸面發育的走向斷層,斷裂大致平行,呈NWW向至近EW向展布,對泥盆系構造格架起著控製作用。這類遙感構造規模相對較大,兩側岩性差異比較清楚,如小南溝-磨房溝遙感斷裂、碾子坪-石埡子遙感斷裂(圖4-39)。

3)三級遙感斷裂:三級遙感斷裂多為線性構造,數量比較多,規模比較小,主要有兩組:一是斜切地層的NE向斷裂,多具右行剪切性質; 二是層間斷裂,與地層線一致圖(4-40)。

圖4-39 碾子坪-石埡子二級斷裂遙感影像(局部)

圖4-40 三級斷裂遙感影像

4)NE向節理群帶:鳳-太礦集區不均勻地發育有一組NE向密集遙感線列影像群帶(圖4-41),實地驗證為節理帶,這組構造對金礦化富集起著積極作用。

(2)環形構造解譯

環形構造指成因與地質構造有關的由弧形或環形影紋構成的環狀影像體,區內共解譯出環形構造與環形構造影像6個。綜合地質、物探、化探資料分析,其中圖幅內規模最大的環形構造即王家莊-坪坎環形構造,其可能為穩定基底型環形構造,地表東西長約38km,南北最寬22km,為長軸近東西向的橢圓狀,環形體內外影像在影紋、水系格局等方面存在明顯的差異,代表著泥盆系基底同生沉積構造; 圖幅西部鳳縣環形影像解譯為斷裂交匯型環形構造,其環形體由弧狀水系與山脊構成,內部呈正地形,紋形雜亂,色調深淺不均,環內有NE向和NW向兩組斷裂交匯。此外,還有一些環形構造,目前其性質不能判明。

(3)褶皺構造解譯

鳳-太礦集區總體呈現為一個由中泥盆統為翼,上泥盆統為核,走向NWW—近EW的復式向斜構造,在全區衛星圖像及岩性解譯圖上可以看出。另外,以中泥盆統古道嶺組灰岩為核、星紅鋪組千枚岩為兩翼的地層又構成若干次級背斜以及短軸背斜。由於南北向構造擠壓強烈,背斜構造多呈緊密線型,遙感影像十分明顯(圖4-42)。這類次級背斜構造的傾伏端或兩翼往往是鉛鋅礦定位的有利構造部位。

圖4-41 北東向節理群帶遙感影像

圖4-42 背斜構造遙感影像

(4)地層(岩性)解譯

岩性、礦物組合的不同及岩石結構的差異都會在波譜特徵上顯示出變化,在地貌上反映為不同的影像結構及不同的色調和紋理特徵。鳳-太礦集區解譯、劃分出以下遙感岩石組合單元:

1)第四系鬆散堆積物:彩色圖像上呈淡青色、細斑點狀圖案,人文活動形跡清楚,主要分布於嘉陵江、安河兩側。

2)下白堊統東河群灰綠色砂礫岩:遙感影像上分布在中低山或山前坡地,彩色合成圖像上呈淺棕色間白色斑塊。

3)侏羅系泥岩、粉砂岩、砂岩:彩色合成影像上為淺棕紅色,地貌相對比較平坦。

4)下三疊統任家溝組粉砂岩、薄層灰岩:影像上為規模較大的山體,水系為對稱枝狀或弧狀。

5)下三疊統西坡組薄層灰岩夾鈣質粉砂岩:影像上為較大山體,水系對稱,排列整齊,具較寬的V型谷。

6)中下二疊統十里墩組炭質砂質板岩、長石砂岩、砂礫岩:影像特徵紋理比較細膩,沖溝多與地層走向一致。

7)中石炭統灰岩、泥灰岩、灰質板岩:影像顯示深暗色帶,高山地形,多為桌狀山、條狀山或條塊山。

8)上泥盆統鐵山組厚—薄層灰岩:影像上顯示山體陡峻,水系多為Y狀分岔,或水系與山脊組合成「搓板」狀。

9)上泥盆統九里坪組上段砂質板岩、砂質灰岩:高山地貌,砂質灰岩在彩色合成圖像上呈綠色條帶。

10)上泥盆統九里坪組下段細砂岩夾千枚岩:影像上水系短小,似平行排列。

11)中泥盆統星紅鋪組鈣質千枚岩夾薄層泥質灰岩、砂質灰岩:影像上水系發育,細而密集,呈線狀影紋,較亂,無規則,可見近EW向層結構紋。

12)中泥盆統古道嶺組上段灰岩:影像上地貌顯示為陡立山峰、棱狀山脊、直線狀水系、V型谷,沖溝短而直。影紋呈柵狀、梳狀。

13)中泥盆統古道嶺組下段粉砂岩、砂質鈣質千枚岩:影像上地貌顯示為高山、彎曲狀棱形山脊,局部可見分支狀,樹枝狀、直線狀水系,溝谷相對開闊,沖溝不發育,影像上影紋為細線狀。

14)花崗岩組:岩基呈粗大的樹枝狀紋形圖案,色調較深,呈暗綠色,以太白岩基為特徵; 小花崗岩體紋形較細,色調較淺。

15)花崗閃長岩:遙感影像上顯示典型樹枝狀水系,宏觀影像為塊狀。

4.遙感異常信息提取

(1)遙感異常信息提取過程

一種地物或岩石在兩個波段上的波譜輻射量是有差別的,這就是波譜曲線的坡度,不同地物在同一段曲線上的坡度有大有小,有正有負,比值方法就是增強這種微小的差別,同時還會消除或減弱地形信息的差別。

工作區特徵蝕變信息的提取主要是依據數據特徵及工作區主要的蝕變特徵而進行的。地質工作研究表明,工作區最主要的蝕變特徵為「硅化、鐵白雲石化、碳酸鹽化、褐鐵礦化」等,硅化信息的提取對於該數據不能完成,因為SiO2在0.52~11.65nm范圍內沒有特徵的吸收顯示,因此信息提取主要為白雲石化和碳酸鹽化的提取。

由圖4-43可以看出,白雲岩在9波段具有一定的反射,而在8波段具有特徵吸收。依據以上特徵使用Aster數據B8、B9波段進行比值運算,提取白雲岩的特徵信息,理論上信息圖像中主要集中了白雲岩等碳酸鹽岩信息。圖4-44為遙感地質解譯圖(附蝕變信息)。

圖4-43 鳳-太礦集區白雲岩PCI光譜曲線

(2)蝕變信息分析

應用MAPGIS中區空間分析功能對遙感蝕變信息的分布特徵進行了分析,圖4-45a為解譯的各種地層在工作區中的面積,圖4-45b為遙感蝕變信息在各地層中的分布比例,可以看出星紅鋪組(D2x)分布的面積最大,其次為古道嶺組和九里坪組上段,這也與該地層的岩性一致,同時也表明了蝕變主要分布的地層。圖4-45c為信息面積佔分布地層面積的比例,可以看出古道嶺組中信息比例最高,上、下兩段中信息比例佔有近40%,表明古道嶺組蝕變最為發育,同時也是礦體賦存的主要層位。

圖4-44 鳳-太礦集區局部遙感地質解譯圖(附蝕變信息)

遙感蝕變信息與已知礦床(點)疊加的分析表明,鳳-太礦集區鉛鋅礦大多與遙感提取的白雲岩化信息有關。如銀母寺鉛鋅礦床、二里河鉛鋅礦床、鉛硐山鉛鋅礦床等周圍都存在遙感蝕變信息。值得注意的是還有許多具有遙感異常的區域目前沒有發現礦體,有待進一步工作。

5.遙感地質認識

鳳-太礦集區中部地區的王家莊-坪坎環形構造,代表著泥盆系基底性質的同生沉積構造,航磁異常對應顯示為均勻低磁特徵。該基底型環形構造內泥盆系含礦地層岩相比較穩定,岩漿活動與構造變形相對較弱,控制了主要鉛鋅多金屬礦產的分布,礦床具有熱水沉積特徵。鉛鋅多金屬礦床的產出與古道嶺組灰岩、星紅鋪組千枚岩岩性接觸帶關系密切,礦床定位主要受次級背斜構造控制。

總結鳳-太礦集區鉛鋅多金屬礦床(點)賦礦空間與遙感岩石地層及遙感構造的關系,得出找礦信息位於:①以灰岩為核的背斜傾伏影像部位; ②灰岩影像分支部位; ③以灰岩為核的背斜軸線轉折部位; ④以灰岩為核的短軸背斜及隱伏背斜。

(三)鳳-太礦集區1:1萬層次遙感方法應用研究

1.數據概況

1:1萬層次遙感工作採用美國IKONOS衛星數據,該數據具有4個4.0m解析度的多光譜波段、1個1.0m解析度的全色波段。由於地面解析度大幅提高,該數據在製作大比例尺遙感圖像與解譯微細構造等方面具有很大的優勢。

圖4-45 鳳-太礦集區遙感蝕變信息分布特徵

2.圖像處理

工作區使用的數據時相為2008年3月10日,該時相無雪無雲,植被覆蓋較少,數據質量總體良好。工作區成圖范圍為:106°49′55″~106°57′37″E,33°53′17″~33°58′02″N。

圖像處理過程經過圖像校正、圖像增強、彩色合成和數據融合等過程。其中圖像校正使用1:5萬地形圖進行校正,比較粗略。圖像增強主要進行了對比度擴展,使用適應性拉升對直方圖進行了擴展。彩色合成及數據融合方案經對數據各種統計參數的分析及不同方案的反復對比,最終選擇了3(R)+2(G)+1(B)與全色波段融合的方案,融合後圖像解析度提高為1m,並保留了假彩色合成的色彩(圖4-46,圖4-47)。

圖4-46 鳳-太礦集區八方山及外圍地區IKONOS遙感影像

圖4-47 二里河鉛鋅礦床IKONOS遙感影像(局部)

3.地質解譯

地質解譯通過對八方山-八卦廟地區1:1萬IKONOS衛星影像解譯分析(圖4-48),主要對工作區內的碳酸鹽岩分布區及以碳酸鹽岩為標志層的次級褶皺構造進行了圈定,同時對區內線形斷裂構造及人類采礦形跡進行了解譯,結合已有的地質資料初步得出以下認識:

圖4-48 八方山-八卦廟地區1:1萬遙感地質解譯圖

(1)遙感構造格局及分區特徵

八方山-八卦廟地區遙感線性構造與褶皺構造分布特徵顯示,該區構造具有SN向分區特點。以黃泥峽溝腦-銅鈴溝(銀母寺-平坎)斷裂為界線,形成兩個NWW向展布遙感構造單元。邊界斷裂略呈弧形展布,走向NWW,斷裂規模大、延伸長。影像顯示,以該斷裂為界,兩側地層褶皺變形特點完全不同。銅鈴溝一帶出露的酸性脈岩帶基本沿分界斷裂的北側分布,研究區處於構造變形強烈的北部區。

北區構造變形十分強烈,以碳酸鹽岩為標志的影像層呈分支復合、尖滅再現,形成一系列規模不等的褶皺。單元內部EW向與NWW向斷裂比較發育,切割部分褶皺。上述褶皺與斷裂構造控制著八方山-八卦廟地區絕大多數的多金屬-貴金屬礦產產出。南區古道嶺組出露連續、穩定,代表碳酸鹽岩的影紋規則、連續性好,褶皺構造與斷裂構造影像極不發育。南部構造區至今未發現成型礦產。

(2)NNE向—近SN向二次疊加褶皺

鳳-太礦集區經歷了NWW向區域褶皺之後,受EW向應力作用,西河以西地區又疊加形成了軸向NNE向—近SN向的二次變形褶皺。該褶皺形態寬緩,褶皺軸在銅鈴溝—八卦廟一帶,遙感影像中可見及一系列同向彎曲、弧頂向南的弧形山脊與水系,同時伴有同向弧形展布的串珠狀岩塊出露,代表了褶皺的轉折部位。根據八卦廟一帶灰岩急劇變厚的現象判斷,應屬寬緩的背斜構造,該地區出現的NNE向密集線列影像應該代表了軸面辟理或者軸部張性斷裂群。

(3)EW向斷裂控制NW向雁列式背斜

八方山-嚴家坪-八卦廟EW向斷裂切割了泥盆系,構造的局部抬升使斷裂南側古道嶺組灰岩為核的次級小背斜沿EW向斷裂清楚地顯露出地表。背斜北西端被EW向斷裂切割,核部灰岩在此出露最寬; 背斜軸向SE傾伏,核部灰岩逐漸尖滅。稍遠於該斷裂,影像亦顯示有多個類似的次級褶皺存在,集中分布於二里河、打柴溝兩側以及手扒崖東側。據影像特徵分析,多屬於半隱伏-隱伏的短軸褶皺,埋深不大。

(4)白楊溝-馬家渠復式向斜構造

通過以古道嶺組灰岩為典型標志層的岩性解譯、追蹤圈定了白楊溝-長溝-核桃溝復式向斜構造。該復式向斜走向NWW,出露全長約12km。由於NWW向斷裂切錯,褶皺在銀洞溝-核桃溝段位移、破壞,顯示不連續(該段褶皺擠壓緊閉,兩翼灰岩不易區分)。但是該褶皺構造在白楊溝向西的轉折端和在西河馬家渠向東的轉折端顯示比較清楚。向斜兩翼以古道嶺組灰岩為核的次級背斜發育。

(5)特殊影像塊體

在南溝的偏溝、八卦廟北等地,古道嶺組灰岩的旁側,出現了幾處影像色彩比較特殊的影像塊體,比較容易與碳酸鹽岩混淆。雖然目前尚不明確遙感波譜所反映的是何種岩石組合或者何種蝕變,值得注意的是,八卦廟北部的特殊影像塊體與已知的金礦床空間關系密切,偏溝特殊影像塊體附近也有絲毛嶺礦化蝕變帶出現。經對比同類方法處理的TM圖像,與東部的雙王金礦鈉長角礫岩帶影像具有十分相似的特徵。

4.找礦預測

研究區鉛鋅礦的找礦預測工作應緊密圍繞所解譯確定的以古道嶺組為核心的褶皺轉折端以及短軸背斜開展,對於所圈定的性質不明的鼻狀構造也應列入探查之列。

(1)二里河緊密褶皺群

沿二里河解譯出5個連續出現的褶皺構造,由北而南分別為:

1)二-1次級向斜:以條帶狀灰岩影像為兩翼,軸向NWW,可見影像約1000m,在二里河東側轉折。據影像中顯示的二里河鉛鋅礦采礦活動位置,位於二-1向斜南北翼部。

2)二-2鼻狀構造:灰岩影像呈銳角狀在二里河東拐折,形成一倒Y字形。

3)二-3穿刺背斜:長軸呈NWW走向、等軸雙層狀顯示,出露長約900m。中部為深色影像塊體,推測為淺埋藏的灰岩,外側環繞有淺色環帶,可能為蝕變千枚岩。二-3穿刺背斜影像結構特徵及規模都與八方山背斜十分相似,其背斜軸向與八方山背斜大致可以對應。

4)二-4次級背斜:軸向NWW,影像顯示出露1.3km,背斜西側轉折端清晰,東側轉折部位影紋較雜亂,與二-3穿刺背斜具有相似的雙層結構特點。該背斜與Pb異常吻合較好,南側並有走向一致的TEM異常。

5)二-5短軸向斜:軸向近EW,影像出露約500m,與二-1次級向斜有相同的紋形與色彩特徵。

根據影像特徵與鉛鋅礦成礦規律分析認為,二里河緊密褶皺群具有良好的找礦前景,且埋藏較淺。尤其二-3穿刺背斜和二-4次級背斜是尋找八方山式鉛鋅礦床的良好構造。可在背斜轉折端布置淺鑽驗證。

(2)蘇家溝緊密褶皺群

蘇家溝解譯出4個次級褶皺和鼻狀構造,根據不很典型的灰岩影像特徵看,褶皺屬於隱伏狀態,埋藏深度較二里河大。由北向南依次為:

1)蘇-1短軸向斜:軸向近EW,出露長度約1km,翼部碳酸鹽岩影紋斷續,東部轉折端比較清楚,西部轉折端隱約不明。

2)蘇-2不完整次級向斜:軸向近EW,影像出露延伸大於1km,西部被橫向斷裂切截,東部轉折端清楚,向斜翼部碳酸鹽岩影紋比較連續。

3)蘇-3鼻狀構造:軸向近EW,東部發生轉折,根據影紋判斷,可能為一小背斜的傾伏端。

4)蘇-4線狀背斜:總體呈NWW向延展,向SE方向傾沒,影像顯示為比較清楚的灰岩條帶。

蘇家溝緊密褶皺群區具有面狀Zn異常分布,同時蘇-1、蘇-2和蘇-3褶皺出露部位有形態與褶皺相似的TEM異常和熱釋汞異常。

在該緊密褶皺群(區)同樣具有較好的找礦前景,可以作為找礦靶區,建議通過地表工程驗證褶皺的存在,並調查含礦性。

(3)打柴溝褶皺群

沿打柴溝兩側斷續出露有碳酸鹽岩影紋,圈出6個褶皺,根據影像顯示,除打-1為一近EW向的鼻狀構造(次級向斜)外,其餘5條均為NW—NWW向平行、斜列展布的線狀背斜,背斜核部灰岩影像斷續、隱約,部分地段為推測。

該區具有找礦條件,可以作為找礦預測區。

(4)核桃溝復式向斜的次級背斜部位

遙感解譯的核桃溝向斜是以古道嶺組灰岩為翼部標志層構成的復式向斜,兩翼由碳酸鹽岩組成復雜的次級背斜。根據影像所顯示的采礦活動形跡,10多個采礦點都與這些次級背斜空間關系密切。

(四)秦嶺地區遙感方法應用與解譯有效性評價

1)通過對鳳-太礦集區1:5萬和1:1萬遙感影像數據處理和解譯,認為在秦嶺中高山強覆蓋地區開展大比例尺遙感影像解譯,Aster數據和IKONOS數據均能夠滿足解析度方面的要求。採用彩色合成、數據融合等手段進行數據處理,能夠有效地增強數據的可分辨程度。

2)利用Aster數據的多光譜特性在1:5萬層次進行特徵礦物蝕變信息的提取較ETM/TM數據具有較高的優越性。

3)採用Aster數據開展1:5萬層次影像解譯,遙感信息提取成果及地質解譯與已知地質要素吻合程度較高。

4)利用IKONOS數據開展1:1萬層次影像製作,在微觀地質單元的解譯方面具有明顯優勢。如對小面積的碳酸鹽岩(及其褶皺構造)分布區域以及人類采礦形跡能夠達到詳細解譯的程度,遙感解譯與地質吻合程度較高。

總之,在秦嶺中高山強覆蓋地區使用Aster數據、IKONOS數據進行1:5萬和1:1萬層次的遙感地質勘查,方法得當,工作有效程度較高。

⑷ 「遙感在森林資源與規劃方面的應用」論文資料

森林資源調查中SPOT5遙感圖像處理方法探討
王照利、黃生、張敏中、馬勝利
(國家林業局西北林業規劃設計院,遙感計算中心,西安710048)

本文發表於<陝西林業科技>2005 No.1 P.27-29,55

摘要:

目前,多光譜、高空間解析度的SPOT5衛星遙感數據被廣泛應用到森林資源調查中。本文結合SPOT5遙感數據的特點,根據森林資源調查的需要,從遙感數據的正射校正、波段組合、融合處理和數據變換處理等方面探討了SPOT5數據的處理和信息提取。探討性地提出了適應於森林資源調查的SPOT5遙感數據處理方法。

關鍵詞:SPOT5 遙感數據,森林資源調查、數據處理

DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORY

Wang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli
(Northwest Institute for Forest Inventory, Planning &Design, Xi』an China 710048)

Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing proceres of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are given.
Key words: SPOT5 image data,forest inventory, data processing

前言

衛星遙感影像具有空間宏觀性、視角廣、多解析度(光譜和空間)、多時相、周期性、信息量豐富等特點,所以衛星遙感影像既可以提供森林資源的宏觀空間分布信息又能提供局部的詳細信息以及隨時間、空間變化的信息等[1]。目前在林業領域衛星遙感數據被廣泛的應用於不同尺度層次的森林資源調查、資源監測、病蟲害、火災監測等方面。
2002年5月法國SPOT地球觀測衛星系列之5號衛星(即SPOT5星)發射。SPOT5遙感數據的多光譜波段空間解析度為10米(短波紅外空間解析度為20米),但全色波段空間解析度達到2.5米。SPOT5遙感數據的高空間解析度和多光譜解析度為森林資源調查提供了豐富的、可靠的、高精度的基礎數據源。從性價比分析,在其他高解析度遙感數據目前比較昂貴的狀況下,SPOT5遙感數據比較適宜應用於大面積的森林資源調查,可大幅度的森林調查的減少外業工作量、提高工作效率。在我國SPOT5衛星數據已被大量地應用於森林資源調查工作中,尤其,是在森林資源「二類」調查中被作基本的森林資源信息源提取各類信息。針對於將多光譜解析度和高空間解析度的SPOT5遙感數據應用於森林資源調查的數據處理技術和方法鮮有報道。本文總結工作實踐,結合SPOT5遙感數據的特點,根據森林資源調查的需要,從遙感數據的訂購、正射校正、波段組合、融合處理和數據變換處理等方面探討了SPOT5數據的基本處理方法。

1.SPOT5衛星遙感數據特點

SPOT衛星系統採用線性陣列感測器和推掃式掃描技術,具有旋轉式平面鏡可以進行傾斜觀察獲得傾斜圖像和立體像對。採用與太陽同步的近極地的橢圓形軌道,軌道高度約832Km,軌道傾角98.7o ,每天繞地球14圈多,重復覆蓋周期26天[2]。由於有傾斜觀測功能,使重復覆蓋周期減少到2-3天。SPOT5衛星載有2台高解析度幾何成像儀(HRG)、1台高解析度立體成像裝置(HRS)和1台寬視域植被探測儀(VGT)。高解析度幾何成像儀的波段選擇是總結了多年的研究成果,認為HRG的波段設置(見表1)足以取得辨別作物和植被類型的最佳效果。本文主要探討HRG高空間解析度數據的處理。

2.SPOT5數據的處理方法和過程

SPOT5數據處理工作流程:

2.1 遙感數據的訂購

訂購數據時,用戶需向數據代理商提供購買區域的四個角的大地坐標或者數據的景號(PATH/ROW)。特別應該注意數據訂購時間和用戶拿到數據之間有時間差,間隔時間長短因用戶的要求、天氣、衛星重復覆蓋周期而異。相對於其他衛星數據,比較有利的一面是SPOT5衛星裝置有旋轉式平面鏡可以進行傾斜觀察,用戶可向代理商申請紅色編程提前得到調查區域的遙感數據,但要支付編程費。對於遙感數據的時相、雲量、入射角、陰影量、是否購買高空間解析度的全色波段等用戶根據自己具體的工作需要向代理商提出限制要求。

根據我們對SPOT5遙感數據的使用,對於森林資源調查,北方9,10月份和11月初的遙感影像比較適宜。代理商向用戶提供經過處理的不同級別的影像產品,在森林資源調查中建議購買SPOT1A級產品,用戶可根據自己的工作需要進行處理,同時也可減少費用。

2.2 基礎數據准備

大比例尺地形圖和高精度DEM是進行SPOT5遙感數據高精度正射校正必需的基礎地理數據。建議購買1:10000地形圖和1:25000數字高程模型(DEM)。

將1:1萬地形圖掃描,掃描解析度設置為300DPI。將掃描好的地形圖進行幾何精糾正,糾正精度控制在0.3毫米內。從測繪部門購買的1:1萬地形圖為北京54坐標系3度分帶高斯克呂格投影,而1:2.5萬DEM為北京54坐標系6度分帶投影。在數據准備時,將校正好的1:1萬地形圖通過換帶轉換轉成和DEM一致的6度分帶投影。

對於沒有1:1萬地形圖的地區,建議使用差分GPS接收機採集地面控制點。

2.3幾何正射校正

正射校正過程應用了法國SPOT公司發行的GEOIMAGE軟體。GEOIMAGE軟體有針對SPOT5衛星數據開發的SPOT5物理模型。模型模塊自動讀取DEM信息。SPOT 物理模型可讀取衛星在獲取遙感數據的瞬間狀態參數,這些參數存貯在數據的頭文件中[3]。衛星狀態參數包括:衛星成像瞬間的經緯度、高度、傾角等。衛星狀態參數能夠幫助提高幾何校正的精度。

以校正好的1:1萬地形圖為基準,在影像圖上找出和地形圖上地物相匹配的明顯地物作為地面控制點。在進行正射校正時,應先進行全色波段數據校正,然後以校正好的全色波段數據為基準進行多光譜數據校正。以全色波段數據為基準校正多光譜波段就比較容易校正,且能提高兩者的匹配精度。地面控制點應分布均勻,影像的邊緣部分布要有控制點分布,同時在不同的高程范圍最好都有控制點。地面控制點的數量因地形地貌的復雜程度而定,根據我們的經驗,一景60KmX60Km的SPOT5數據,一般地勢平緩的地區20個左右控制點即可達到滿意的結果,在高山區25個左右控制點就可使正射校正精度滿足要求。重采樣方法採用雙線性內插法。

2.4 輻射校正

用戶購買的SPOT5的各級數據,數據提供商已經根據衛星的記錄參數對遙感數據做了輻射校正,即消除了感測器自身引起的、大氣輻射引起的輻射雜訊。若果影像存在薄霧或地形高差較大引起的輻射誤差情況,用戶應進一步進行輻射校正處理。薄霧的簡單消除原理是基於近紅外波段不受大氣輻射影響,清澈的水體或死陰影區的數值應為零。從各波段數據中減去近紅外波段的水體或陰影的不為零值。地形起伏引起的輻射誤差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)為坡度為a的傾斜面上的地物影像;f (x,y)為校正後的影像。由於坡度因子參與校正所以需要DEM支持。

2.5 波段組合

根據SPOT5數據波譜特徵(表1),各波段分別記錄反映了植被的不同特徵方面:B4(SWIR)短波紅外反映植物和土壤的含水量,利於植被水分狀況和長勢分析;B3(NIR)近紅外波段對植被類別、密度、生長力、病蟲害等的變化敏感;B2(RED)紅光波段對植被的覆蓋度、植被的生長狀況敏感;B1(VIS)可見光波段對植物的葉綠素和葉綠素濃度敏感。經過比較分析和實際應用發現SPOT5的B3、B4、B2波段組合對植被類型的識別要優於B3、B2和B1的組合。但由於B4波段的空間解析度為20米,使B342組合對植被空間幾何細節表達沒有B321組合清晰,例如林緣界線信息表達方面B321要優於B342。

2.6 影像數據融合

對於購買有高空間解析度全色波段數據的用戶,進行數據融合是必不可少的。影像數據融合能夠綜合不同波段、不同空間解析度數據(層)的特徵,融合後的數據具有更豐富、更可靠的信息[4]。 根據影像數據融合的水平階段,影像融合分為:像元級、特徵級和決策級三個層次。為了最大限度的從SPOT5遙感數據中提取森林植被信息,應進行像元級的數據融合,將2.5米的全色波段和10米多光譜數據進行融合。融合得到的新數據既具有全色波段數據的高空間解析度特徵又具有多光譜特徵。
像元級數據融合的方法多種多樣,根據數據融合的目的,即最大限度的突顯森林植被信息,應選取B4、B3、B2和PAN波段,根據我們的試驗Brovey 融合演算法方法比較理想:

2.7遙感影像地圖

將融合好的數據按Rfused、Gfused、Bfused組合,疊加上行政界線、公里格網、坐標、比例尺等輔助信息,按1:1萬地形圖分幅生成1:1萬紙質圖作為外業手圖。

3. 結果和討論

3.1 幾何精度

利用SPOT5物理模型,採用1:1萬地形圖和2.5萬DEM ,經過正射校正處理,可使影像的幾何精度控制在2個像元內(<10米),達到1:1萬制圖標准要求。為以遙感影像為基礎信息源提取林分調查因子、區劃林班界線生成大比例尺的林相圖、森林分布圖提供了幾何精度保障。

3.2 波段選擇

對於沒有全色波段的情況,SPOT5數據的B342組合有利於森林植被類型的識別。在應用遙感技術進行森林資源調查區劃中,林分類型信息提取是最為重要的環節,所以B342波段組合是小班區劃和外業手圖的最佳組合。

3.3 融合效果

融合數據技術使SPOT5遙感影像既具有全色波段的高空間解析度又擁有多光譜數據的光譜解析度,豐富了遙感影像的信息量。採用Brovey演算法使SPOT5遙感影像從色彩、紋理等方面增強了影像的可判讀性,提高了小班因子正判率和林分小班的區劃精度。

參考文獻
1.周成虎,楊曉梅,駱劍承等.《遙感影像地學理解與分析》,科學出版社,北京,2001,3-4.
2.趙英時.《遙感應用分析原理與方法》,科學出版社,北京,2001.88-90
3.北京視寶衛星圖像有限公司.《專業制圖工作室GEOIMAGE用戶指南》,2004,68-70.
4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,51-52.

21世紀遙感與GIS的發展
來源: 李德仁 時間: 2005-08-11-23:09 瀏覽次數: 79

21世紀遙感與GIS的發展

李德仁
(武漢大學測繪遙感信息工程國家重點實驗室,武漢市珞瑜路129號,430079)

摘要:在20世紀,人類的一大進步是實現了太空對地觀測,即可以從空中和太空對人類賴以生存的地球通過非接觸感測器的遙感進行觀測,並將所得到的數據和信息存儲在計算機網路上,為人類社會的可持續發展服務。在短短的30年中,遙感和GIS作為一個邊緣交叉學科已發展成為一門科學、技術和經濟實體。本文深入地論述了21世紀中遙感的6大發展趨勢和GIS的5個發展特徵。

關鍵詞:發展趨勢;航空航天遙感;地理信息系統;對地觀測
中圖法分類號:P208;P237.9

隨著計算機技術、空間技術和信息技術的發展,人類實現了從空中和太空來觀測和感知人類賴以生存的地球的理想,並能將所感知到的結果通過計算機網路在全球流通,為人類的生存、繁榮和可持續發展服務。在20世紀後半葉,遙感和地理信息系統作為一門新興的科學和技術,迅速地成長起來。

1 遙感技術的主要發展趨勢

1.1 航空航天遙感感測器數據獲取技術趨向三多(多平台、多感測器、多角度)和三高(高空間解析度、高光譜解析度和高時相解析度)

從空中和太空觀測地球獲取影像是20世紀的重大成果之一,短短幾十年,遙感數據獲取手段迅猛發展。遙感平台有地球同步軌道衛星(35000km)、太陽同步衛星(600—1000km)、太空飛船(200—300km)、太空梭(240—350km)、探空火箭(200—1000km),並且還有高、中、低空飛機、升空氣球、無人飛機等;感測器有框幅式光學相機、縫隙、全景相機、光機掃描儀、光電掃描儀、CCD線陣、面陣掃描儀、微波散射計雷達測高儀、激光掃描儀和合成孔徑雷達等,它們幾乎覆蓋了可透過大氣窗口的所有電磁波段。三行CCD陣列可以同時得到3個角度的掃描成像,EOS Terra衛星上的MISR可同時從9個角度對地成像。

衛星遙感的空間解析度從Ikonos Ⅱ的1m,進一步提高到Quckbird(快鳥)的0.62m,高光譜解析度已達到5—6nm,500—600個波段。在軌的美國EO-1高光譜遙感衛星,具有220個波段,EOS AM-1(Terra)和EOS PM-1(Aqua)衛星上的MODIS具有36個波段的中等解析度成像光譜儀。時間解析度的提高主要依賴於小衛星技術的發展,通過發射地球同步軌道衛星和合理分布的小衛星星座,以及感測器的大角度傾斜,可以以1—3d的周期獲得感興趣地區的遙感影像。由於具有全天候、全天時的特點,以及用INSAR和D-INSAR,特別是雙天線INSAR進行高精度三位地形及其變化測定的可能性,SAR雷達衛星為全世界各國所普遍關注。例如,美國宇航局的長遠計劃是要發射一系列太陽同步和地球同步的長波SAR,美國國防部則要發射一系列短波SAR,實現干涉重訪問間隔為8d、3d和1d,空間解析度分別為20m、5m和2m。我國在機載和星載SAR感測器及其應用研究方面正在形成體系。「十五」期間,我國將全方位地推進遙感數據獲取的手段,形成自主的高解析度資源衛星、雷達衛星、測圖衛星和對環境與災害進行實時監測的小衛星群。

1.2 航空航天遙感對地定位趨向於不依賴地面控制

確定影像目標的實地位置(三維坐標),解決影像目標在哪兒(Where)是攝影測量與遙感的主要任務之一。在已成功用於生產的全自動化GPS空中三角測量的基礎上,利用DGPS和INS慣性導航系統的組合,可形成航空/航天影像感測器的位置與姿態的自動測量和穩定裝置(POS),從而可實現定點攝影成像和無地面控制的高精度對地直接定位。在航空攝影條件下的精度可達到dm級,在衛星遙感的條件下,其精度可達到m級。該技術的推廣應用,將改變目前攝影測量和遙感的作業流程,從而實現實時測圖和實時資料庫更新。若與高精度激光掃描儀集成,可實現實時三維測量(LIDAR),自動生成數字表面模型(DSM),並可推算出數字高程模型(DEM)。

美國NASA在1994年和1997年兩次將航天激光測高儀(SLA)安裝在太空梭上,企圖建立基於SLA的全球控制點資料庫,激光點大小為100m,間隔為750m,每秒10個脈沖;隨後又提出了地學激光測高系統(GLAS)計劃,已於2002年12月19日將該衛星IICESat(cloud and land elevation satellite)發射上天。該衛星裝有激光測距系統、GPS接收機和恆星跟蹤姿態測定系統。GLAS發射近紅外光(1064nm)和可見綠光(532nm)的短脈沖(4ns)。激光脈沖頻率為40次/s,激光點大小實地為70m,間隔為170m,其高程精度要明顯高於SRTM,可望達到m級。他們的下一步計劃是要在2015年之前使星載LIDAR的激光測高精度達到dm和cm級。

法國利用設在全球的54個站點向衛星發射信號,通過測定多普勒頻移,以精確解求衛星的空間坐標,具有極高的精度。測定距地球1300km的Topex/Poseidon衛星的高度,精度達到±3cm。用來測定SPOT 4衛星的軌道,3個坐標方向達到±5cm精度,對於SPOT 5和Envisat,可望達到±1m精度。若忽略SPOT 5感測器的角元素,直接進行無地面控制的正射像片製作,精度可達到±15m,完全可以滿足國家安全和西部開發的需求。

1.3 攝影測量與遙感數據的計算機處理更趨向自動化和智能化

從影像數據中自動提取地物目標,解決它的屬性和語義(What)是攝影測量與遙感的另一大任務。在已取得影像匹配成果的基礎上,影像目標的自動識別技術主要集中在影像融合技術,基於統計和基於結構的目標識別與分類,處理的對象既包括高解析度影像,也更加註重高光譜影像。隨著遙感數據量的增大,數據融合和信息融合技術逐漸成熟。壓縮倍率高、速度快的影像數據壓縮方法也已商業化。我國學者在這些方面取得了不少可喜的成果。

1.4 利用多時像影像數據自動發現地表覆蓋的變化趨向實時化

利用遙感影像自動進行變化監測(What change)關繫到我國的經濟建設和國防建設。過去人工方法投入大,周期長。隨著各類空間資料庫的建立和大量新的影像數據源的出現,實時自動化監測已成為研究的一個熱點。

自動變化監測研究包括利用新舊影像(DOM)的對比、新影像與舊數字地圖(DLS)的對比來自動發現變化和更新資料庫。目前的變化監測是先將新影像與舊影像(或數字地圖)進行配准,然後再提取變化目標,這在精度、速度與自動化處理方面都有不足之處。筆者提出了把配准與變化監測同步的整體處理[1]。最理想的方法是將影像目標三維重建與變化監測一起進行,實現三維變化監測和自動更新。進一步的發展則是利用智能感測器,將數據處理在軌完成,發送回來的直接為信息,而不一定為影像數據。

1.5 攝影測量與遙感在構建「數字地球」、「數字中國」、「數字省市」和「數字文化遺產」中正在發揮愈來愈大的作用

「數字地球」概念是在全球信息化浪潮推進下形成的。1999年12月在北京成功地召開了第一屆國際「數字地球」大會後,我國正積極推進「數字中國」和「數字省市」的建設,2001年國家測繪局完成了構建「數字中國」地理空間基礎框架的總體戰略研究。在已完成1∶100萬和1∶25萬全國空間資料庫的基礎上,2001年全國各省市測繪局開始1∶5萬空間資料庫的建庫工作。在這個數據量達11TB的巨型資料庫中,攝影測量與遙感將用來建設DOM(數字正射影像)、DEM(數字高程模型)、DLG(數字線劃圖)和CP(控制點資料庫)。如果要建立全國1m解析度影像資料庫,其數據量將達到60TB。如果整個「數字地球」均達到1m解析度,其數據量之大可想而知。本世紀內可望建成這一解析度的數字地球。

「數字文化遺產」是目前聯合國和許多國家關心的一個問題,涉及到近景成像、計算機視覺和虛擬現實技術。在近景成像和近景三位量測方面,有室內各種三維激光掃描與成像儀器,還可以直接由視頻攝像機的系列圖像獲取目標場三維重建信息。它們所獲取的數據經過計算機自動處理後,可以在虛擬現實技術支持下形成文化遺跡的三維模擬,而且可以按照時間序列,將歷史文化在時間隧道中再現,對文化遺產保護、復原與研究具有重要意義。

1.6 全定量化遙感方法將走向實用

從遙感科學的本質講,通過對地球表層(包括岩石圈、水圈、大氣圈和生物圈4大圈層)的遙感,其目的是為了獲得有關地物目標的幾何與物理特性,所以需要通過全定量化遙感方法進行反演。幾何方程式是有顯式表示的數學方程,而物理方程一直是隱式。目前的遙感解譯與目標識別並沒有通過物理方程反演,而是採用了基於灰度或加上一定知識的統計、結構和紋理的影像分析方法。但隨著對成像機理、地物波譜反射特徵、大氣模型、氣溶膠的研究深入和數據積累,多角度、多感測器、高光譜及雷達衛星遙感技術的成熟,相信在21世紀,估計幾何與物理方程式的全定量化遙感方法將逐步由理論研究走向實用化,遙感基礎理論研究將邁上新的台階。只有實現了遙感定量化,才可能真正實現自動化和實時化。

2 GIS技術的主要發展趨勢

2.1 空間資料庫趨向圖形、影像和DEM三庫一體化和面向對象[2]

GIS發展曾經歷過柵格、矢量兩個不同數據結構發展階段,目前隨著高解析度衛星遙感數據的飛快增長和數字地球、數碼城市的需求,形成了面向對象的數據模型和三庫(圖形矢量庫、影像柵格庫和DEM格網庫)一體化的數據結構。這樣的資料庫結構使GIS的發展更加趨向自然化、逼真化,更加貼近用戶。以面向應用的GIS軟體為前台,以大型關系資料庫(Oracle 8i,9i等)為後台資料庫管理,成為當前GIS技術的主流趨勢。

2.2 空間數據表達趨向多比例尺、多尺度、動態多位和實時三維可視化

在傳統的GIS中,空間數據是以二維形式存儲並掛接相應的屬性數據。目前,空間數據表達的趨勢是基於金字塔和LOD(level of detail)技術的多比例尺空間資料庫,在不同尺度表示時可自動顯示出相應比例尺或相應解析度的數據,多比例尺數據集的跨度要比傳統地圖的比例尺大,在顯示不同比例尺數據時,可採用LOD或地圖綜合技術。真三維GIS的空間數據要存儲三維坐標。動態GIS在土地變更調查、土地覆蓋變化監測中已有較好的應用,真四維的時空GIS將有望從理論研究轉入實用階段。基於三庫一體化的時空3D可視化技術發展勢頭迅猛,已能再PC機上實現GIS環境下的三維建築物室外室內漫遊、信息查詢、空間分析、剖面分析和陰影分析等,基於虛擬現實技術的真三維GIS將使人們在現實空間外,可以同時擁有一個Cyber空間。

2.3 空間分析和輔助決策智能化需要利用數據挖掘方法從空間資料庫和屬性資料庫中發現更多的有用知識

GIS是以應用導向的空間信息技術,空間分析與輔助決策支持是GIS的高水平應用,它需要基於知識的智能系統。知識的獲取是專家系統中最困難的任務。隨著各種類型資料庫的建立,從資料庫中挖掘知識成為當今計算機界一個非常引人注目的課題。從GIS空間資料庫中發現的知識可以有效的支持遙感圖像解譯,以解決「同物異譜」和「同譜異物」的問題。反過來,從屬性資料庫中挖掘的知識又具有優化資源配置等一些列空間分析的功能[3]。盡管數據挖掘和知識發現這一命題仍處於理論研究階段,但隨著資料庫的快速增大和對數據挖掘工具的深入研究,其應用前景是不可估量的。

2.4 通過Web伺服器和WAP伺服器的互聯網和移動GIS將推進聯邦資料庫和互操作的研究及地學信息服務事業

隨著計算機通訊網路(包括有線和無線網)的大容量和高速化,GIS已成為在網路上的分布式異構系統。許多不同單位、不同組織維護管理的既獨立又互聯互用的聯邦資料庫,將可提供全社會各行各業的應用需要。因此,聯邦資料庫和互操作(federal databases & interoperability)問題成為當前國際GIS聯合研究的一個熱點。互操作意味著資料庫中數據的直接共享,GIS規律功能模塊的互操作與共享,以及多點之間的相同工作,這方面的研究已顯示出明顯的成效。未來的GIS用戶將可能在網路上繳納為其需要所選用數據和軟體功能模塊的使用費,而不必購買這個資料庫和整套的GIS軟硬體,這些成果產生的直接效果是GIS應用將走向地學信息服務。

目前已興起的LBS和MLS,即基於位置的服務和移動定位服務,突出地反映了這種變化趨勢。它引起的革命性變化使GIS將走出研究院所和政府機關,成為全社會人人具備的信息服務工具。我國目前已有2億個手機用戶,若每人每月為MLS支付10元費用,全國一年的產值將達到240億。可以預測在不久的將來,地學信息將能隨時隨地為任何人和任何事情進行4A服務(geo-in-formation for anyone and anything at anywhere and anytime)。

2.5 地理信息科學的研究有望在本世紀形成較完整的理論框架體系

筆者曾扼要地敘述了地球空間信息科學的7大理論問題[4]:(1)地球空間信息的基準,包括幾何基準、物理基準和時間基準;(2)地球空間信息標准,包括空間數據採集、存儲與交換標准、空間數據精度與質量標准、空間信息的分類與代碼標准、空間信息的安全、保密及技術服務標准以及元數據標准等;(3)地球空間信息的時空變化理論,包括時空變化發現的方法和對時空變化特徵的和規律的研究;(4)地球空間信息的認知,主要通過各目標各要素的位置、結構形態、相互關聯等從靜態上的形態分析、發生上的成因分析、動態上的過程分析、演化上的力學分析以及時態上的演化分析達到對地球空間的客觀認知;(5)地球空間信息的不確定性,包括類型的不確定性、空間位置的不確定性、空間關系的不確定性、邏輯的不一致性和信息的不完備性;(6)地球空間信息的解譯與反演,包括定性解譯和定量反演,貫穿在信息獲取、信息處理和認知過程中;(7)地球空間信息的表達與可視化,涉及到空間資料庫多解析度表示、數字地圖自動綜合、圖形可視化、動態模擬和虛擬現實等。目前,這些方面的研究對建立完備的理論尚嫌不足,需要在今後加強這方面的基礎研究。

關於遙感與GIS的集成,涉及到GPS和通信技術的集成,本文未作具體討論,其具體內容可參見文獻[4—6]。

3 結語

遙感與GIS在20世紀出現,在21世紀不僅將形成自身的理論體系和技術體系,而且將形成天地一體化的空間信息服務產業,為國民經濟建設、國家安全、社會可持續發展和提高人民生活質量做出愈來愈大的貢獻。

參考文獻:

[1] Li D R, Sui H G. Automatic Change Detection of Geospatial Data from Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34(II):245—251
[2] 龔健雅. 地理信息系統基礎. 北京:科學出版社,2001
[3] 邸凱昌. 空間數據發掘與知識發現(第一版). 武漢:武漢大學出版社,2000. 182
[4] 李德仁,關澤群. 空間信息系統的集成與實現(第一版). 武漢:武漢測繪科技大學出版社,2000. 244
[5] 李德仁,李清泉. 論地球空間信息技術與通信技術的集成. 武漢大學學報(信息科學版),2001,26(1):1—7
[6] 李德

⑸ 遙感影像信息的提取技術方法研究進展

遙感的對地觀測系統是一個信息流交換的過程:電磁波與地表物體相互作用形成地表信息交流。而遙感影像信息提取技術就是最大限度地從遙感圖像上的光譜信息反演出目標地物本身的屬性特徵信息。進而可對地球表層資源與環境進行探測、分析,並揭示其要素的空間分布特徵與時空變化規律。遙感影像信息的提取技術是建立在對地物規律有充分的了解的基礎之上的,其綜合物理手段、數學方法和地物狀態識別等認識,通過對影像的處理與分析,獲得能反映區域內地物的分布規律和變化過程的有效信息的技術方法。

遙感地物識別主要依賴於地物的光譜和空間特徵的差異。多光譜由於光譜解析度低,地物的光譜特徵表現不充分,地物識別主要依賴地物的空間特徵,包括灰度、顏色、紋理、形態和空間關系。信息處理和信息提取主要是應用圖像增強、圖像變換和圖像分析方法,增強圖像的色調、顏色以及紋理的差異,達到最大限度地區分地物的目的。隨著成像光譜儀研製成功以及其產業化的發展,遙感地物信息提取也隨之進入了一個嶄新的時代。成像光譜對地物的識別主要是依賴於地物的光譜特徵,是直接利用岩石礦物的光譜特徵進行地物識別,定量分析地物信息。下面從多光譜和高光譜遙感信息處理兩方面來加以論述。

1.多光譜方法研究進展

多光譜的信息提取主要集中於:色調信息提取,紋理信息提取,信息融合。

(1)色調信息提取

對於色調信息提取,主要是採用一些增強處理,擴大圖像中地物間的灰度差別,以突出目標信息或改善圖像效果,提高解譯標志的判別能力,如反差擴展、彩色增強、運算增強、變換增強等,這些傳統的圖像處理方法在一定程度上滿足了應用的需要。近年來發展了一系列的以主成分變換為主的信息提取技術,在岩礦信息提取中發揮了重要的作用。如張滿郎(1996)提出修正的直接主成分分析提取鐵氧化物信息。OF 變換(Maxium Noise Fraction Transformation)(Kruse,1996,Creen,et al.,1988),NAPC(Noise-adjust Principal Components Transform)(Lee,et al.,1990)、分塊主成分變換(Jia,et al.,1999)、基於主成分的對應分析(Carr,et al.,1999),以及基於主成分分析的空間自相關特徵提取(Warner,et al.,1997)、子空K投影(Harsanyl,et al.,1997)和高維數據二階特徵分析(Lee,et al.,1993;Haertel,et al.,1999)等,也是基於主成分分析進行信息特徵選擇與特徵提取。同時,根據模式識別的原理,提出並設計出監督分類與非監督分類方法:以及利用決策樹進行分類識別(Wrbka,et al.,1999;Friedl,et al.,1999;Hansen et al.,1996),這些技術與方法是建立在圖像灰度特徵之上,利用數理統計的知識進行地物分類與信息提取。

(2)紋理信息提取

遙感影像的邊緣和紋理信息對線環構造的識別具有一定作用,但卻似乎無助於岩性的識別。邊緣信息提取通常採用濾波運算元或銳化的方法進行(Gross,et al.,1998;Varbel,2000)。紋理信息提取通常採用共生矩陣、傅立葉功率譜和紋理譜等方法。

(3)信息融合

多源數據融合研究也非常普及與深入,其技術方法涉及不同的數理知識(Jimen,et al.,1999;Pohl,1998;Robinson,et al.,2000;Price,1999;Gross et al.,1998),比如小波信息融合。應用面涉及非遙感數據(王潤生,1992;朱亮璞,1994),如遙感數據與地化數據、物探數據的疊置與融合。這些方法一方面開闊了遙感的應用視野,另一方面也擴展了遙感的應用能力。

總的來說,多光譜遙感岩礦信息提取主要是基於圖像灰度特徵,即基於岩礦的反射率強度差異,採用一些數學變換方法,增強或突出目標信息,使之易於目視解譯。在數據處理中,由於波段有限,未能有效地導入岩礦類別的光譜知識,其結果精度更多地取決於研究人員的經驗。

2.高光譜方法研究進展

成像光譜技術是多光譜技術發展的飛躍,它是在對目標對象的空間特徵成像的同時,對每個空間象元經過色散或分光形成幾十個乃至幾百個窄波段以進行連續的光譜覆蓋。形成的遙感數據可以用「圖像立方體(三維)」來形象描述,其中兩維表示空間,另一維表徵光譜。這樣,在光譜和空間信息綜合的三維空間內,可以任意地獲得地物「連續」的光譜以及其診斷性特徵光譜,從而能夠基於地物光譜知識直接識別目標地物,並可進一步地獲取定量化的地物信息。在地質應用中,礦物識別和信息處理技術可分為:①基於單個診斷性吸收的特徵參數;②基於完全波形特徵以及③基於光譜知識模型三大類型。

岩石礦物單個診斷性吸收特徵可以用吸收波段位置(λ)、吸收深度(H)、吸收寬度(w),吸收面積(A)、吸收對稱性(d)、吸收的數目(n)和排序參數作一完整地表徵。根據端元礦物的單個診斷性吸收波形,從成像光譜數據中提取並增強這些參數信息,可直接用於識別岩礦類型。如IHS編碼與吸收波段圖(Kruse,1988)是利用連續法去除後的光譜圖像,定義出波段吸收中心位置圖像,波段深度圖像以及波段半極值寬度圖像,並分別賦予HS I 空間的明度(H)、強度(l)和飽和度(S),然後逆變換到RGB色度空間。從而根據色調差異進行礦物直接識別。在描述岩礦單個診斷性吸收特徵參數中,吸收深度是一非常重要的特徵指標而受到重視。如相對吸收深度圖(RBD image,Relative absorption Band-depthimage)(Crowley,et al.,1989)採用比值運算來增強識別端元的吸收深度,即根據要識別端元的單個診斷性吸收峰的兩側肩部反射率之和,除以其谷中心鄰近兩側對應波長的反射率之和的商圖像,來表徵端元礦物診斷性吸收峰的相對吸收深度。不同端元礦物的RBD圖像,除象元本身比值大小代表了端元礦物存在的可能性外,通過進一步地諸如PC變換分析進行特徵增強與選擇來識別端元礦物。由於吸收峰的非對稱性,採用RBD方法難以准確描述其特徵。連續插值波段演算法(CIBR,continuum interpolated band algorithm)(De Jong,1998)和光譜吸收指數圖像(SAI,spectral absorption index image)(王晉年等,1996)與相對吸收深度圖方法類似,但引入了對稱度因子,使其對吸收特徵的描述更為合理。CIBR是利用診斷性光譜吸收谷中心的輻射值,除以左右肩部的輻射值與吸收特徵對稱度因子之積的和,產生相應的商圖像,用以增強不同礦物的診斷性吸收深度,進行礦物識別。SAI方法與CIBR類似,也是對單個吸收波形肩部的特徵增加了對稱度因子。上述方法類似於常規比值或彩色增強處理。與常規增強處理最大不同之處在於有機地融入端元礦物的光譜特徵這一先驗知識,針對性、目的性更明確。由於大氣輻射對遙感數據中波譜特徵的影響、光譜混合形成的光譜漂移和變異對單個波形的影響,使識別結果含有較大的干擾。

成像光譜最大的優勢在於利用有限細分的光譜波段,去再現象元對應物的波譜曲線。這樣,利用整個光譜曲線進行礦物匹配識別,可以在一定程度上改善單個波形的不確定性影響(如光譜漂移、變異等),提高識別的精度。基於整個波形的識別技術方法是在參考光譜與象元光譜組成的二維空間中,合理地選擇測度函數度量標准光譜或實測光譜與圖像光譜的相似程度。例如,光譜匹配(SM,Spectral matching)(Baugh,et al.,1998)利用岩礦光譜矢量的歐氏距離測度函數,即求圖像象元光譜與參考光譜在光譜空間中的差異大小。距離愈小,表示圖像端元光譜或待識別的端元光譜與來自實驗室或野外實測的參考光譜之間擬合程度愈高。類似地,相似指數(SI,similarity index algorithm)(Fenstermaker,et al.,1994)是基於歐氏距離側度,根據已知地物類型的圖像象元平均光譜與未知圖像象元光譜的波段差值平方和的均值大小來識別地物。以上兩種方法比基於單個吸收波形參數識別技術可靠。但往往由於光譜數據解析度的影響,其光譜的差異不明顯,同時又因歐氏距離測度固有的缺陷而難以對地物進行准確分類與識別。光譜角識別方法(SAM,spectral angle mapper)(Ben-Dor,et al.,1994;Crosta,et al.,1998;Drake,et al.,1998:Yuhas,et al.,1992)是在由岩礦光譜組成的多維光譜矢量空間,利用一個岩礦光譜矢量的角度測度函數求解岩礦參考光譜端元矢量(r)與圖像象元光譜矢量(t)的相似程度。參考端元光譜既可來自實驗室、野外測量,也可來自已知類別的圖像象元光譜。根據兩者相似程度大小,識別與提取礦化蝕變信息。該方法的難點在於如何合理地選擇閾值進行信息分割。不過,從已有應用的角度看,該方法簡單易行、比較可靠。交叉相關匹配(Fer-rier,et al.,1999;Varder Meer,et al.,1997)是使用一個相關因子(r.)作為相似性指數,通過逐象元交叉相關匹配進行礦物識別。當參考光譜與檢驗光譜完全匹配時,其位置m=0;參考光譜向長波方向移動時,其m<0。反之,m>0。在RGB空間,分別賦予斜度(skewness),t檢驗值與相關因子以R,G,B;若在「0」匹配位置,其斜度、t檢驗值與相關因子(r.)均接近於「1」而顯示為白色,從而識別出端元礦物。對於礦物的智能識別,往往也採用完全譜形。例如,Tetracord礦物識別軟體是基於UNIX平台,利用光譜資料庫中的光譜與圖像光譜擬合從而自動進行識別礦物;王潤生等(1999)根據礦物的完全波形,利用神經網路進行礦物自動識別。以上方法在具有大量已知地物光譜時適應性強。對圖像地物識別更有用。但明顯不足是由於實際地物光譜變異、獲取數據受觀測角以及顆粒大小的影響而造成光譜變化,對於整體光譜特徵差別不太大的地物,准確匹配比較困難,造成岩礦識別與分析上的混淆和誤差。

基於光譜模型的識別的技術方法是建立在一定的光學、光譜學、結晶學和數學理論之上的信號處理技術方法。它不僅能夠克服上述方法存在的缺陷,而且在識別地物類型的同時精確地量化地表物質的組成和其他的物理特性。例如,建立在Hapke光譜雙向反射理論基礎之上的線性混合光譜分解模型(SMA/SUM)(Adams,et al.,1986;Mustard,et al.,1987;Roberts,et al.,1997;Sabol,et al.,1992;Settle,et al.,1993;Shipman,et al.;1987:Shimabukuro,et al.,1991;Smith,et al.,1985),可以根據不同地物或者不同象元光譜反射率響應的差異,構造光譜線性分解模型。一個象元內並非存在單一類型地物,而更多地由不同類型地物組成。因此,在大多數情況下,象元光譜並非為純地物光譜的線性混合,而更多地表現為非線性。對於單散射,可作為線性模型分解,多散射則認為非線性混合。由於平均單散射反照率豐度主要依賴於成分含量不同而可以認為是線性混合(Mustard,et al.,1987)。這樣,通過單散射反照率(SSA)轉換,即可以利用運算元W=(3r+6)r/(1 +2r)2,將非線性「線性化」,再進行光譜分解。Tompkins(1996)提出修正的光譜混合分析(MSMA)模型。該模型利用虛擬端元,採用一個阻尼最小二乘演算法,根據一定的先驗知識,有效地並最終可以選擇亞像端元進行光譜分解,提高了SMA實用性。與SMA相比,MSMA最大的不同表現在:①端元以及其豐度均作為未知變數;②對數據組中所有象元同時求解。對於能量約束最小模型(CEM,constrained en-ergy minimization technique)(Farrand,et al.,1997;Farrand,et al.,1996;Resmini,et al.,1997)是在成像光譜圖像序列中,運用一個目標區域(或ROI區域,region of insteresting)與象元光譜(ri)相關的權系數wk來描述象元向量的數字值y,從而進行特徵選擇與分解進行地物識別與信息提取。與混合光譜分解模型一樣,該分解結果在一定程度上,不僅代表了識別象元的類型信息,而且有機地表示了其豐度比值。與混合光譜分解模型不同的是,該方法更多地依賴於目標區域的統計特徵,但結果更精確。總之,這些方法更多地依賴光譜學知識與數理方法,在實際應用中由於難以確定特徵參數或難以准確地描述光譜模型而限制了該類技術方法的應用。不過,由於該類方法在識別地物的同時量化物質組成,因此就其發展趨勢而言,隨著一系列技術的成熟與光譜學、結晶學等知識的深入發展,識別精度的改善與量化能力的提高,其應用將會越來越廣泛。

國內也相繼開展了一些成像光譜進行礦物直接識別應用試驗,但由於國產感測器的性能尚不夠完善,數據信噪比較低。但在定性岩礦識別方面取得了一定的收獲。如甘甫平等(2000)利用基於波形特徵組合的主成分分析有效地對河北張家口後溝金礦區進行了岩性劃分;劉慶生(1999)利用對應分析提取出內蒙古某礦區的含金蝕變。在直接定量礦化識別、識別模型和識別譜系等方面都落後於美國等發達國家,相比還存在一定差距。

總之,岩礦光譜學機理研究、遙感信息提取基礎與遙感信息提取方法技術研究,三者之間相輔相成,具有一定的對應關系。

遙感地物光譜應用基礎與遙感影像信息提取技術研究隨著遙感光譜成像技術的發展而發展,兩者研究方向與趨勢都主要集中在光譜特徵知識與地物物理化學屬性的關聯以及光譜物理模型兩大方面。對地物物化屬性與光譜特徵的相關性和對光譜物理模型的深入分析與研究可從不同的角度為遙感直接識別礦物、提取地物的分布規律、屬性、物化性質以及進行地物深層次信息挖掘等提供理論基礎支撐,推動遙感應用技術的發展。遙感地學應用的實用化與產業化是遙感地物光譜應用基礎與遙感地物影響信息提取技術研究相互促進的結果。

地物光譜學機理研究、遙感信息提取基礎與遙感信息提取方法技術研究的發展將導致三者的結合,並最終綜合於遙感應用模型和技術集成中,以便充分利用各自的優勢,提高遙感應用能力並增強對地質應用的理解,以及模擬、評估和預測地學發展的規律。

⑹ 遙感信息的重點研究內容

遙感技術可以提供大量地質礦產信息,這些信息有時是常規地質方法難以得到的。主要包括(樓性滿等,1994;劉燕君,1991):

(1)通過斷裂構造的解譯,確定較大的斷裂、剪切帶、破碎帶、並作分級處理,對其性質、時代和成礦關系進行分析。重點是對控礦斷裂的識別,區分成礦前和成礦後的斷裂,確立含礦構造帶。

(2)劃分岩帶(相)單元,了解地層分布、褶皺形態,進行含礦層追索等。解譯地層的擠壓變形、錯位及位移量,礦化蝕變帶分布,甚至更詳細的岩脈、節理、蝕變類型及分帶等,從而為成礦預測提供基礎地質資料。

(3)圈定成礦岩體:通過對環形構造或橢圓形構造的解譯分析,可以識別出露岩體、半出露的、淺隱伏和深隱伏岩體的分布。並可研究侵入體的內部結構、節理系統、含礦岩脈、礦化蝕變暈圈等,分析岩漿活動期次,岩體穿插關系及復雜程度。

(4)對火山岩的分析:可以確定火山口的位置,研究火山機構的結構、組成、噴發類型、成因及其含礦性等。

(5)利用遙感信息進行礦物填圖包括蝕變礦物填圖,詳見後述。

區域成礦研究中的遙感地質工作,構造解譯為其重要內容。大量的遙感找礦實踐證明,內生礦產的空間分布基本上與線性構造和環形影像有關,尤其是線性構造交叉部位和線性構造與環形構造交叉部位,常是礦床(體)產出的有利地段。

作為重要的控礦因素,斷裂構造在遙感圖像上一般呈現為線性構造,有時也以放射狀、環狀等形式出現,樓性滿等(1994)較系統地總結了斷裂構造的遙感標志(表4-1)。

表4-1 斷裂構造的遙感影像特徵

續表

環形構造也是遙感影像上一種與成礦密切相關,既可以是由隱伏岩基引起,也可能反映礦床的蝕變礦化暈。翟裕生等(1992)根據對銅陵—鄂城一帶環形構造的研究,結合前人的一些資料,初步提出了環形影像與環形構造的成因分類(表4-2),並總結提出了環形構造的地質找礦意義,包括:

表4-2 環形影像和環形構造的成因分類

(1)環形構造能反映隱伏岩體的存在。隱伏岩體常伴隨氣液蝕變礦化暈、熱變質暈、環狀或放射狀斷裂、上覆岩體變形等,造成環形遙感影像特徵。隱伏岩體是很多金屬礦床的礦質、成礦流體和熱動力的主要來源,與成礦緊密相關。

(2)環形構造的組合關系有助於判斷是單一岩體還是復式岩體,通常單一岩體不利於成礦,而復式岩體的多期次活動,造成礦質分餾的良好條件,有利於形成礦床。單一岩體在影像上常是單調孤立的環形構造,而復式岩體表現為復雜的環形構造組合(套合),環體密集、互相重疊,造成母子環、環套環、環切環等影像,顯示了多次侵入岩體的組合關系,對在復式岩體內找尋隱伏礦體有一定的指示意義。

(3)環形構造反映隱伏的控岩控礦構造,藉助於遙感環形影像可幫助我們判斷隱伏的控岩控礦構造。當控礦構造為環形斷裂或弧形斷裂時,在遙感影像上表現為環形或半環影像。結合地面觀測,常可判斷出隱伏的控礦斷裂(帶)。

(4)環形構造能反映蝕變礦化暈,這些暈圈或是由出露礦體和相伴的蝕變礦化暈直接形成的,或是由隱伏礦體或隱伏含礦岩體造成的異常色調或影紋結構而形成的。蝕變礦化暈的規模、強度、分布等情況一般能反映成礦的規模、強度和空間分布特徵,對比研究其表現出的環形構造(及組合)可以幫助認識這些特徵。

⑺ 海洋遙感論文

3S技術包括
GPS技術
RS技術
GIS技術
通常用於海岸線的測量與管理

留個郵箱,可以給你一些相關的參考文獻,包括
《基於3S技術的海岸線測量與管理應用研究》
《"3S"技術在海域勘界中的應用》
《遙感在海岸線修測中的應用技術探討》
《我國海洋環境遙感的發展》
《遙感衛星探測海洋環境的特點及發展》
《衛星海洋遙感的發展和預報中心遙感應用》
《遙感技術在環境監測中的應用》
《GIS在海灣陸源污染物總量控制中的應用》
《基於GIS的南海環境管理信息系統的研究》
等十幾篇

應該對你的論文有所幫助

⑻ 攝影測量與遙感畢業論文

(1)聯系工作實際
選題要結合我國行政管理實踐(特別是自身工作實際),提倡選擇應用性較強的課題,特別鼓勵結合當前社會實踐亟待解決的實際問題進行研究。建議立足於本地甚至是本單位的工作進行選題。選題時可以考慮選些與自己工作有關的論題,將理論與實踐緊密結合起來,使自己的實踐工作經驗上升為理論,或者以自己通過大學學習所掌握到的理論去分析和解決一些引起實際工作問題。
(2)選題適當
所謂選題要適當,就是指如何掌握好論題的廣度與深度。選題要適當包括有兩層意思:
一是題目的大小要適當。題目的大小,也就是論題涉及內容的廣度。確定題目的大小,要根據自己的寫作能力而定。如果題目過大,為了論證好選題,需要組織的內容多,重點不易把握,論述難以深入,加上寫作時間有限,最後會因力不勝任,難以完成,導致中途流產或者失敗。相反,題目太小了,輕而易舉,不費功夫,這樣又往往反映不出學員通過幾年大學階段學習所掌握的知識水平,也失去從中鍛煉和提高寫作能力的機會,同時由於題目較小,難以展開論述,在字數上很難達到規定字數要求。此外,論文題目過小也不利於論文寫作,結果為了湊字數,結尾部分東拼西湊,結構十分混亂。
二題目的難易程度要適當。題目的難易程度,也就是論題涉及的深度。確定題目的難易,也要根據自己的寫作能力而定,量力而為。題目難度過大,學員除了知識結構、時間和精力的限制外,資料搜集方面也有局限。這樣,就會帶來一些意想不到的困難,致使論文寫了一半就寫不下去了,中途要求另選題目。所以,在這個問題上的正確態度應該是:既不要脫離實際,好高騖遠,去選一些自己不可能寫好的論題;又不能貪圖輕便,降低要求,去寫一些隨手可得的論題。
(3)選題要新意
所謂要有新意,就是要從自己已經掌握的理論知識出發,在研究前人研究成果的基礎上,善於發現新問題,敢於提出前人沒有提出過的,或者雖已提出來,但尚未得到定論或者未完全解決的問題。只要自己的論文觀點正確鮮明,材料真實充分,論證深刻有力,也可能填補我國理論界對某些方面研究的空白,或者對以前有關學說的不足進行補充、深化和修正。這樣,也就使論文具有新意,具有獨創性。
特別注意

畢業論文的撰寫及答辯考核是順利畢業的重要環節之一,也是衡量畢業生是否達到要求重要依據之一。但是,由於許多應考者缺少系統的課堂授課和平時訓練,往往對畢業論文的獨立寫作感到壓力很大,心中無數,難以下筆。因此,就畢業論文的撰寫進行必要指導,具有重要的意義。
(一)、畢業論文是應考者的總結性獨立作業,目的在於總結學習專業的成果,培養綜合運用所學知識解決實際問題的能力。從文體而言,它也是對某一專業領域的現實問題或理論問題進行科學研究探索的具有一定意義的論說文。完成畢業論文的撰寫可以分兩個步驟,即選擇課題和研究課題。
(二)、選好課題後,接下來的工作就是研究課題,研究課題一般程序是:搜集資料、研究資料,明確論點和選定材料,最後是執筆撰寫、修改定稿。
第一、研究課題的基礎工作——搜集資料。考生可以從查閱圖書館、資料室的資料,做實地調查研究、實驗與觀察等三個方面來搜集資料。搜集資料越具體、細致越好,最好把想要搜集資料的文獻目錄、詳細計劃都列出來。首先,查閱資料時要熟悉、掌握圖書分類法,要善於利用書目、索引,要熟練地使用其他工具書,如年鑒、文摘、表冊、數字等。其次,做實地調查研究,調查研究能獲得最真實可靠、最豐富的第一手資料,調查研究時要做到目的明確、對象明確、內容明確。調查的方法有:普遍調查、重點調查、典型調查、抽樣調查。調查的方式有:開會、訪問、問卷。最後,關於實驗與觀察。實驗與觀察是搜集科學資料數據、獲得感性知識的基本途徑,是形成、產生、發展和檢驗科學理論的實踐基礎,本方法在理工科、醫類等專業研究中較為常用,運用本方法時要認真全面記錄。
第二、研究課題的重點工作——研究資料。考生要對所搜集到手的資料進行全面瀏覽,並對不同資料採用不同的閱讀方法,如閱讀、選讀、研讀。
第三、研究課題的核心工作――明確論點和選定材料。在研究資料的基礎上,考生提出自己的觀點和見解,根據選題,確立基本論點和分論點。提出自己的觀點要突出新創見,創新是靈魂,不能只是重復前人或人雲亦雲。同時,還要防止貪大求全的傾向,生怕不完整,大段地復述已有的知識,那就體現不出自己研究的特色和成果了。
第四、研究課題的關鍵工作――執筆撰寫。下筆時要對以下兩個方面加以注意:擬定提綱和基本格式。
第五、研究課題的保障工作――修改定稿。通過這一環節,可以看出寫作意圖是否表達清楚,基本論點和分論點是否准確、明確,材料用得是否恰當、有說服力,材料的安排與論證是否有邏輯效果,大小段落的結構是否完整、銜接自然,句子詞語是否正確妥當,文章是否合乎規范。

⑼ 遙感學習方法

要學好遙感,你需要具備良好的數學功底和物理基礎、厚實的自然地理基礎,及遙感與現實生活結合的思維能力。個人建議你:
1、學好《遙感導論》,看看《遙感地學分析》《遙感原理與應用》《遙感物理》等等相關書籍,從而對遙感本質有更深刻地認識;
2、下載一些遙感方面的論文,隨便看看,大方位地撒網,看看別人是怎麼用遙感解決現實問題的,都做了哪些研究,你看看有沒有什麼地方你感興趣的,也可以跟導師討論討論;
3、對於遙感常用軟體ERDAS、ENVI、PCI都熟練掌握;
4、遙感和GIS,GPS結合應用的實例也去找來看看!

祝你學習進步,也希望該解答對你有幫助。

⑽ 遙感方面的論文怎麼寫

洋河流域遙感圖像土地利用分類方法研究
【摘要】遙感影像分類方法的確定是LUCC研究中的關鍵步驟。文章以洋河流域為研究區,分別進行了非監督分類和監督分類。針對監督分類結果中存在的誤差,對水域、植被、城鎮與工礦用地三種類型地物的提取分別選擇了綜合閾值法、植被指數法、DEM數據輔助分析法進行了改進,結果表明改進後的提取結果較監督分類直接得到的結果有了很大的改善。
【關鍵詞】遙感圖像;監督分類;綜合閾值法;植被指數法
【中圖分類號】TP79 【文獻標識碼】A
【文章編號】1671-5969(2007)16-0164-03

一、研究區域概況及圖像資料
(一)研究區域概況
洋河流域是張家口經濟發展的中心地帶,水資源相對豐富。洋河發源於山西省陽高縣和內蒙古興和縣,是永定河上游的一大支流,流域面積約14600km2 。在張家口市流域面積為9762km2,流經萬全縣、懷安縣、張家口市區、宣化縣、宣化區、下花園區、懷來縣等,幹流全長106 km,在朱官屯於桑乾河匯合後流至官廳水庫,是官廳水庫的重要水源。洋河流域形狀東西向較長,南北向較短,地形總趨勢西北高、東南低。流域的東北、北部和西北沿壩頭一帶海拔高程1200~1500m之間,西部和南部邊界海拔高程一般在500~1000m之間。流域內80%以上為丘陵山區,絕大部分為荒山禿嶺。流域內大部分為黃色沙壤土,並有部分砂礫土及黃粘土,沿河川地層厚且較肥沃[1]。
(二)信息源
遙感信息源的選擇要綜合考慮其光譜解析度、空間解析度、時間解析度等因素, 這是利用遙感圖像進行土地利用分類的關鍵問題。美國的Landsat TM 圖像是當前應用最為廣泛的衛星遙感信息源之一,它可提供7個波段的信息, 空間解析度為30~120m。TM數據源各波段各有特點,可進行不同地物類型的信息提取。相關資料表明TM遙感數據各波段間的信息相關關系為:TM1與TM2,TM5與TM7高度相關,相關系數達0.95以上,信息冗餘大,可以考慮不選取TM1波段。另外由於第6個波段的解析度為120m,不利於地物信息的提取,所以亦不選取TM6波段。一般來說, 選擇圖像類型時,應考慮研究區域的大小、研究的目的,以及要達到的精度要求,另外不同時相遙感圖像的選擇對分類精度也具有很大的影響。為了能把水域、城市與工礦用地、林地、耕地、裸地區分開,以洋河流域1987年9月17日的TM圖像為信息源進行研究。本文中所使用的遙感圖像處理工具為美國ERDAS公司的ERDAS IMAGINE8.4軟體,它是一個功能完整的、集遙感與地理信息系統於一體的專業軟體,具有數據預處理、圖像解譯、圖像分類、矢量功能、虛擬gis等多個功能。
二、現有遙感圖像土地利用分類的主要方法及其分析
遙感圖像土地利用分類就是利用計算機通過對遙感圖像中各類地物的光譜信息和空間信息進行分析,選擇特徵,並用一定的手段將特徵空間劃分為互不重疊的子空間,然後將圖像中的各個像元劃歸到各個子空間中以實現分類[2]。按照是否有已知訓練樣本的分類數據,將其分為非監督分類和監督分類。它們最大的區別在於監督分類首先給定類別,而非監督分類則由圖像數據本身的統計特徵來確定。
(一)非監督分類
非監督分類是在多光譜特徵空間中通過數字操作搜索像元光譜屬性的自然群組的過程,這種聚類過程生成一副有m個光譜類組成的分類圖。然後分析人員根據後驗知識將光譜類劃分或轉換成感興趣的專題信息類[3]。洋河流域內有很多山地,在圖像上會產生大量的陰影,導致了像元灰度值的空間變化,這對分類結果有很大的影響。為此可以通過比值運算來去除陰影的影響,使向陽處和背陰處都毫不例外地只與地物的反射率的比值有關。常用演算法:近紅外波段(TM4)/紅外波段(TM3),這樣所得到的效果比較好,從原始圖像和比值運算後的圖像(圖像略)中,可以清楚地看到山體陰面的陰影得到了有效的去除。經過比值運算後, 就可以對圖像進行非監督分類。得到的分類結果如圖1所示。非監督分類只根據地物的光譜特徵進行分類,受人為因素的影響較少,不需要對地面信息有詳細的了解,但由於「同物異譜、異物同譜」等現像的存在,其結果一般不如監督分類令人滿意。比如官廳水庫旁邊的大量建築物被分到水體一類。是因為在TM3波段上,水體和建築物的灰度值相近, 同樣在TM7波段上,裸山和建築物的灰度值也相近。總之,在TM的6個波段上,無論採用哪個波段進行非監督分類,總有幾種地物的光譜值接近,因此單純依靠計算機自動分類取得很好的效果是非常困難的。

閱讀全文

與遙感的論文研究方法相關的資料

熱點內容
電腦沒有廣告的方法 瀏覽:232
如何預防尿路感染的方法 瀏覽:562
家裡去火鍋味有什麼好方法 瀏覽:391
理論課教學方法包括 瀏覽:471
治療酒糟鼻的有效方法 瀏覽:924
分數的初步的教學方法 瀏覽:972
金融研究方法論大全 瀏覽:763
用一根皮筋簡單扎一個馬尾的方法 瀏覽:690
簡述體育舞蹈常用教學方法 瀏覽:345
海藻粒敷面的正確方法 瀏覽:290
有哪些方法快速補充雌激素 瀏覽:743
抗鋸齒方法怎麼選 瀏覽:554
焊工工時費計算方法 瀏覽:589
股後束鍛煉方法 瀏覽:615
腦梗的康復治療方法 瀏覽:670
腦癱最新治療方法 瀏覽:18
80乘以79分之31簡便方法 瀏覽:449
三生螺旋藻使用方法 瀏覽:389
如何提高團體的業績方法 瀏覽:608
哪些方法可以收集信息 瀏覽:897