一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
示例:
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
示例:
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
示例:
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
示例:
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
數學乘法運算定律
整數的乘法運算滿足:交換律,結合律,分配律,消去律。
隨著數學的發展, 運算的對象從整數發展為更一般群。
群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
1、乘法交換律:ab=ba,註:字母與字母相乘,乘號不用寫,或者可以寫成「·」。
2、乘法結合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
② 43乘201用簡便方法計算
43×201
=43×(200+1)
=43×200+43×1
=8600+43
=8643
(2)小學乘法簡便運算的方法擴展閱讀
簡便方法計算的相關定律
1、乘法分配律
乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
4、加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
5、加法結合律
三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變:(a+b)+c=a+(b+c)
③ 98×84的簡便運算
98×84的簡便運算如下:
用乘法分配律使計算簡便:
98×84
=(100-2)×84
=100×84-2×84
=8400-168
=8232
(3)小學乘法簡便運算的方法擴展閱讀:
乘法分配律:
兩個數相加(或相減)再乘另一個數,等於把這個數分別同兩個加數(減數)相乘,再把兩個積相加(相減),得數不變。
用字母表示:
(a+b)× c=a×c+b×c
變式:
(a-b)× c=a×c-b×c
此題運用乘法分配和乘法結合定律來進行計算,步驟如下:
33333×66666
=33333×(22222×3)
=33333×3×22222
=99999×22222
=(100000-1)×22222
=100000×22222-22222
=2222200000-22222
=2222177778
先用乘法分配率把66666分為22222×3,再用乘法結合律,先算33333×3,積為99999,此時為99999×22222,運用加法結合律,把99999換算成100000-1,這樣一來,即可做簡便計算。
簡便計算方法
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
4、加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
5、加法結合律
(a+b)+c=a+(b+c)