㈠ 光伏電池最大功率點跟蹤控制方法
光伏電池最大功率點的跟蹤是通過最大功率感測器獲得信息並傳輸到控制器,控制器驅動電機微調,直到功率最大後停止轉動。如果一段時間後,感測器輸送的信息改變,又進行調整。就保證。
㈡ 北京海瑞克科技發展有限公司的太陽能電池實訓設備
設備名稱: 光伏電池組件生產實訓系統 設備編號: HIK-SET-1 Ø 技術指標:
1、輸入電源:220V±10% 50HZ
2、設備尺寸:1550mm×800mm×1750mm
3、佔地面積:2平米(單台)
4、設備整體重量:120Kg
5、工作環境:溫度-10℃~40℃
6、 相對濕度﹤85﹪(25℃)
7、設備包裝:木箱整體包裝
Ø 系統組成
太陽能電池板、離網逆變器、並網逆變器、太陽能控制器、蓄電池、直流負載、交流負載、數字式交直流電壓電流表、按鍵,開關模塊、人造光源等
Ø 產品特點及功能
1、系統功能配置完善,模塊化設計,做工精細。
2、實驗台實用價值強,所採用的太陽能電池板、智能控制器、蓄電池均與現場應用中一樣,可使學生深刻理解太陽能光伏發電的現場應用。
3、實驗台配備了發光效果(光譜)最接近太陽光的氙燈來模擬太陽光源,使得實訓項目隨時都可以進行,從而不需要受天氣變化的限制。
4、具備光伏型和家用型兩種控制方式。
5、帶有蓄電池電源存儲系統,可進行市電充電,形成混合供電系統。留有光伏組件升級埠,可外置較大功率的光伏組件。光伏組件可選擇室內放置和室外兩種模式。
6、太陽能電池組具體參數如下:
峰值功率:15W;最大功率電壓:18V;最大功率電流:0.84A;開路電壓:21.24V;短路電流:0.91A;安裝尺寸:420*350*25mm
7、太陽能控制器具體功能如下:
使用單片機和專用軟體,實現智能控制,自動識別24V系統。採用串聯式PWM
充電控制方式,使充電迴路的電壓損失較原二極體充電方式降低一半,充電效率較非PWM高3-6%;過放恢復的提升充電,正常的直充,浮充自動控制方式有利於提高蓄電池壽命。 多種保護功能,包括蓄電池反接、蓄電池過、欠壓保護、太陽能電池組件短路保護,具有自動恢的輸出過流保護功能,輸出短路保護功能。
8、蓄電池:為鉛酸電池,具有如下特點:
自放電率低; 使用壽命長;深放電能力強;充電效率高;工作溫度范圍寬 。
9、離網逆變器:正弦波逆變器,具體功能參數如下:
純正弦波輸出(失真率<4%)
輸入輸出完全隔離設計
能快速並行啟動電容、電感負載
三色指示燈顯示,輸入電壓,輸出電壓,負載水準和故障情形
負載控制風扇冷卻
過壓/欠壓/短路/過載/超溫保護
10、負載:
負載包括:LED燈,節能燈等,可提供多種應用負載實驗:感性、阻性、功能性應用實驗(手機等智能設備)。
11、並網逆變器:
模擬並網系統的實驗項目,實現DC-AC變換,輸出電壓:220VAC;輸入電壓:DC12V,數據讀取功能。
12、聯網功能(微機另配):
配備通訊適配器,與計算機進行連接,顯示光伏發電系統的充電電流,負載電流,蓄電池電壓等技術參數,完成實驗時數據的讀取,可監測太陽能發電系統的運轉情況等。
Ø 實驗項目
實驗一:太陽能電池發電原理實驗
實驗二:太陽能光伏板能量轉換實驗
實驗三:環境對光伏轉換影響實驗
實驗四:太陽能電池光伏系統直接負載特性實驗
實驗五:太陽能控制器工作原理實驗
實驗六:接反保護實驗
實驗七:太陽能控制器對蓄電池的過充保護實驗
實驗八:太陽能控制器對蓄電池的過放保護實驗
實驗九:夜間防反充實驗
實驗十:離網逆變器工作原理實驗
實驗十一:並網型逆變器工作原理實驗
實驗十二:光伏並網實驗 設備名稱: 風光互補發電實訓系統 設備編號: HIK-SET-2 Ø 產品簡介
風光互補發電實驗台,可完成風力機、太陽能互補獨立運行系統實驗,和風能、太陽能並網運行實驗系統的大部分控制過程實驗及運行過程演示。
Ø 實驗內容
1、限速機械保護系統原理實驗
2、限速電控保護系統原理實驗
3、風、光互補最大功率點跟蹤控制實驗
4、過功率保護實驗
5、蓄電池充放電特性及過壓、欠壓保護實驗
6、風力發電、太陽能發電相關控制、測量、技術實驗驗
7、風力發電基礎理論與應用技術模擬實驗
8、分布式風力發電、太陽能發電互補供電系統控制技術實驗模擬
9、固態並聯逆變器系統穩定性模擬
10、太陽能發電系統用逆變器課程設計模擬實驗
Ø 實驗配置
太陽電池組件、免維護蓄電池、逆變器、控制器、負載、風機、實驗講義、測試報告等 設備名稱: 光伏發電並網系統實驗台 設備編號: HIK-SET-3 Ø 產品簡介
太陽能光伏並網發電系統實訓裝置太陽能光伏發電有無限的太陽光資源,綠色、環保、低碳、無需資源分配等優點。在國家能源建設和儲備中得到了廣泛的應用。光伏並網發電,是當前全球最大規模利用太陽能資源發電的一種重要方式。並網發電,是將太陽能電池所發出的直流電通過逆變器轉換成波形良好的交流電,直接向電網供電,無儲能裝置,運行可靠性和轉換效率比較高,系統的建設和維護成本較低。我公司結合多年在新能源行業的研發和生產經驗,特別推出了光伏並網系統實驗室室,主要可以提供系統配套件,電池組件陣列、最大功率跟蹤調節支架、方陣避雷匯流箱、並網逆變器、升壓輸變箱、計量監控通訊等。
Ø 組成部分
1、光伏陣列單元:
在院區修建約10平方米的平台,安裝支架,鋪設總峰值功率為0.6~12kW的光伏陣列。
在條件允許的情況下,光伏陣列選用三種不同類型的太陽能電池進行實驗。
單晶硅太陽能電池,變換效率15~17%,厚度300um,黑色,硬質不可捲曲,拉制溫度1400度。在光伏並網發電系統中得到普遍使用。
多晶硅太陽能電池,變換效率12~14%,厚度300um,深藍色,硬質不可捲曲,拉制溫度1000度。具有接近於單晶硅太陽電池的穩定性和較強的空間抗輻射性能,成本低於單晶硅太陽能電池。
非晶硅太陽能電池,變換效率6~10%,厚度1um,可捲曲,暗紅色,生產溫度200度,生產成本低,溫度系數低,高溫條件和弱光條件下,任然獲得高功率輸出。
2、逆變控制單元:系統根據實驗的需要,通過開關單元的開和關,最多可以實現6台不同型號和產地的並網逆變器同時運行,配備同時並網通道,可滿足對比實驗和各種數據採集的需要。
3、開關控制單元:所有系統內外單元的引線經隔離開關接至各自的跳線端子上,在實驗過程中,一旦發生漏電、短路、過流、過熱情況,開關自動斷開電源,起到保護儀器儀表和人身的安全。
4、方陣連接單元:示意接線面板上,最小單元的引線經隔離開關接至各自的跳線端子,根據實驗的需要,可以用跳線自由地組合成不同開路電壓(180~450VDC 和200~450VDC),峰值功率(600~1200W)的系統。
5、顯示單元:直流電壓、直流電流、交流電壓、交流電流、頻率、室內溫度、濕度、時鍾、當前發電功率、有功和無功功率、日發電量累計。
6、環境監測單元:系統配置1套環境監測儀,用來監測現場的環境情況。該裝置由風速感測器、風向感測器、日照輻射表、測溫探頭、控制盒及支架組成。可測量環境溫度、風速、風向和輻射強度等參數,通過RS485介面與並網監控裝置工控機通訊。
7、並網監控單元:
監控裝置包括監控主機、監控軟體和顯示設備。本系統採用高性能工業控制PC機作為系統的監控主機,配置光伏並網系統多機版監控軟體,採用RS485通訊方式,可以實時獲取所有並網逆變器的運行參數和工作數據,並對外提供乙太網遠程通訊介面。
工控機的性能特點:嵌入式低功耗C3系列處理器;帶LCD/CRTVGA介面;乙太網口;RS232通訊介面;配備RS485/RS232轉接器;USB2.0;256M內存(可升級);40G 筆記本硬碟(可升級)。
並網系統的網路版監控軟體(SPS-PVNET)功能:實時顯示電站的當前發電總功率、日總發電量、累計總發電量、累計CO2總減排量以及每天發電功率曲線圖;可查看每台逆變器的運行參數,主要包括(但不限於):直流電壓、直流電流、交流電壓、交流電流、逆變器機內溫度、時鍾、頻率、當前發電功率、日發電量、累計發電量、累計CO2減排量、每天發電功率曲線圖。
監控所有逆變器的運行狀態,採用聲光報警方式提示設備出現故障,可查看故障原因及故障時間,監控的故障信息至少包括:電網電壓過高、電網電壓過低、電網頻率過高、電網頻率過低、直流電壓過高、逆變器過載、逆變器過熱、逆變器短路、逆變器孤島、DSP故障、通訊失敗顯示單元可採用液晶電視,具有非常好的展示效果。
8、 監控軟體
集成環境監測功能,主要包括日照強度、風速、風向和環境溫度。
監控主機同時提供對外的數據介面,即用戶可以通過網路方式,異地實時查看整個電源系統的實時運行數據以及歷史數據和故障數據。
可每隔5分鍾存儲一次電站實驗所有運行數據,包括實時存儲環境數據、故障數據等參數。
可連續存儲20年以上的電站實驗所有的運行數據和所有的故障紀錄。
可提供中文和英文兩種語言版本。
Ø 實驗項目
v 不同太陽能電池組件通過跳線,相互結合後能量轉換的綜合比較和實驗,如何提高品質和信價比。
v 不同並網逆變器電路拓撲和調制方式的比較和實驗,確定優化產品設計方案。
v 不同並網逆變器防孤島保護方式的比較和實驗,探討新技術。
v 不同並網逆變器的最大功率跟蹤控制方法的比較實驗,探討新方法。
v 方陣電子跟蹤器與MPPT的有效結合和分離控制方法的比較實驗,探討新技術。
v 在不同天氣和日照強度下並網逆變器電流的波形,諧波含有率實驗。
v 與風力發電互補並網系統控制技術實驗。
Ø 工作技術條件
1、光伏陣列輸出電壓180~450VDC
2、並網輸出電壓180~456VAC
3、並網頻率范圍47.8~51.2Hz
4、效率94.5%
5、功率因數>0.99
6、最大功率跟蹤180~400VDC
7、通訊介面RS485
8、保護功能:防雷、極性反接、短路、漏電、過熱、孤島效應、過載保護、電網過欠壓、電網過欠頻保護、接地故障保護等。
9、工作環境:溫度-20℃~50℃
10、相對濕度﹤90﹪(25℃) 設備名稱: 光伏電池實驗儀 設備編號: HIK-SET-4 Ø 產品簡介
太陽能是一種新能源,對太陽能的充分利用可以解決人類日趨增長的能源需求問題。目前,太陽能的利用主要集中在熱能和發電兩方面。利用太陽能發電目前有兩種方法,一是利用熱能產生蒸氣驅動發電機發電,二是太陽能電池。太陽能的利用和太陽能電池的特性研究是21世紀的熱門課題,許多發達國家正投入大量人力物力對太陽能接收器進行研究。為此,我們開發了太陽能電池的特性研究實驗。
GCGF-B型太陽能電池實驗儀主要研究太陽能電池的電學性質和光學性質,並對兩種性質進行測量。該實驗作為一個綜合設計性實驗,聯系科技開發實際,能激發學生的學習興趣。
Ø 教學目的
1、無光照時,測量太陽能電池的伏安特性曲線
2、了解並掌握太陽能電池的特性及其測量方法
3、了解太陽能電池基本應用
Ø 儀器功能
1、太陽能電池短路電流測試實驗
2、太陽能電池開路電壓測試實驗
3、太陽能電池伏安特性測試實驗
4、太陽能電池負載特性測試實驗
5、太陽能LED驅動實驗
Ø 實驗配置
太陽能電池實驗儀主機箱、光路組件、實驗講義、測試報告等 設備名稱: 光伏發電教學實驗箱 設備編號: HIK-SET-5 Ø 產品簡介
太陽能教學實驗箱,控制器的作用是對蓄電池的充、放電條件加以規定和控制,並按照負載對電源的需求控制太陽能電池和蓄電池對負載的電能輸出。控制器是對自動充電、用電的監控裝置,當蓄電池充滿電時,它會自動切斷充電迴路,使蓄電池不至過充;如果蓄電池電能減少,它會自動恢復充電。當蓄電池放電超過規定值時,即過放電時,它會自動切斷放電迴路,不至使蓄電池放電過深;電能增加後,它會自動恢復供電。
Ø 產品工作原理
1.太陽能電池組件
太陽能電池組件由多個單晶或多晶、非晶電池單元串、並聯並經封裝後製成。其中的單晶電池單元的功能是將太陽的光線吸收發生伏打效應產生一定的電壓、電流,並按照需求串、並聯而將太陽能轉換成電能輸出,經電纜送至控制器。
2.蓄電池
蓄電池的作用是將太陽能電池組件產生的電能儲存起來。當光照不足或晚上,或者負載需求大於太陽能電池組件所產生的電能時,將存儲的電能釋放出來以滿足負載的能量需求。
3.正弦波逆變器
正弦波逆變器的作用是將太陽能電池組件產生的直流電或者蓄電池釋放的12V直流電轉化為負載需要的36V正弦交流電。
Ø 主要技術指標
1.太陽能電池組件功率:20W
2.蓄電池容量:12V/7Ah
3.控制器:
額定輸出電壓、電流:12V/2A
蓄電池過充保護:16.2V,恢復14.4V
蓄電池過放保護:10.8V,恢復12.4V
三種輸出模式:普通開/關模式、光控開/光控關模式、光控開/時控關模式
4.正弦波逆變器:
輸出波形與頻率:正弦波/50HZ±1HZ
額定輸入電壓、電流:10.8V~13.2V/2A
額定輸出電壓、電流:36V±10%/0.42A
額定輸出功率:15VA
輸出功率因數:≥95%(線性負載)
逆變效率:≥75%
5.輸入市電:AC220V/50HZ
6.箱體尺寸:660×490×240mm
7.工作環境:0°C~40°C、≤85%RH
Ø 實驗內容
實驗一:太陽能電池發電原理實驗
實驗1-1 :太陽能光伏板能量轉換實驗
實驗1-2:環境對光伏轉換影響實驗
實驗二:太陽能電池光伏系統直接負載實驗
實驗三:光伏控制型太陽能系統發電實驗
實驗3-1:光伏型控制器工作原理實驗
實驗3-2:光伏型控制器充放電保護實驗
實驗四:戶用型太陽能發電和利用實驗
實驗4-1:戶用型控制器工作原理
實驗4-2:戶用型控制器充放電保護實驗
實驗五:太陽能系統電器負載實驗;
實驗六:綜合實驗
實驗七:戶用型控制器電腦軟體實驗
實驗八:光伏型控制器電腦軟體實驗
實驗九:直接負載電腦軟體實驗
實驗十:Zigbee遠端無線監測
外型尺寸手提箱式:50cm*40cm*10cm 設備名稱: 光伏建築一體化實訓系統 設備編號: HIK-SET-6 Ø 產品簡介
本實驗裝置的創新點是以建築模型為載體,充分利用光電、光熱和溫差物理效應的原理和實驗方法,將半導體,光纖、感測和測控技術融為一體,構建了多模塊的組合式的智能建築物理綜合創新設計平台。
該裝置設計理念先進,科技含量高,綜合性強,屬於多學科交叉的實驗儀器,實驗設計平台的各個模塊,既有與光電、光熱和溫差物理效應的原理和實驗方法密切相關的基礎物理實驗,又有與半導體器件、光纖和各種感測器的物性測量的實驗,還有利用物理效應、感測器和各種實驗技術圍繞智能建築載體進行應用設計的實驗。本實驗裝置是基於國家大學生創新實驗項目和競賽項目(2010年獲湖北省首屆大學生物理實驗創新設計競賽一等獎)的基礎上改進完善提高後定型的。通過智能化立體建築模型激發學生的興趣,自主設計和綜合實驗研究與探索的慾望。
Ø 教學目的
1、觀測光電、光熱和溫差物理現象和規律
2、了解和掌握光電、光熱和溫差物理效應的原理和實驗方法
3、了解和掌握半導體器件、光纖和相關感測器工作原理了
4、掌握測量半導體器件、光纖和相關感測器的物理特性的實驗技術和方法
5、學習組裝相關實驗模塊或測量裝置,檢測各種器件、材料和感測器的基本特性
6、學習應用光電、光熱和溫差物理效應原理和實驗方法及相關器件進行各種應用設計
7、學科交叉有助提高學生科學思維、創新意識、綜合實驗、自主設計和實驗研究能力
Ø 儀器功能
Ⅰ、光電效應模塊(光伏發電系統)
1、太陽能電池短路電流測量
2、太陽能電池開路電壓測量
3、太陽能電池伏安特性測量
4、太陽能電池負載特性測量
5、超級電容物性測量
6、太陽能電池時間響應特性研究
7、太陽能電池光譜相應特性研究
8、光伏發電效率研究
9、超級電容電池的設計與組裝
10、太陽能電池充電器設計
11、太陽能LED驅動電路設計
12、向日葵式太陽能跟蹤系統的設計
Ⅱ、光熱效應模塊(太陽能集熱系統)
1、光熱轉換效率測量
2、真空管的集熱效率的測量
3、太陽能聚光系統設計
4、簡易太陽能集熱系統設計
5、簡易太陽能乾燥箱的設計
6、簡易太陽能熱水器的設計
7、簡易太陽能灶具的設計
8、簡易光熱均衡自循環系統的設計
Ⅲ、溫差效應模塊(溫差發電與製冷系統)
1、塞貝克效應
2、半導體製冷片的基本性能測量(短路電流、開路電壓、伏安特性等)
3、製冷片冷、熱端溫度與短路電流的關系
4、製冷片冷、熱端溫度與開路電壓的關系
5、製冷片塞貝克系數測量
6、半導體製冷片輸出功率曲線測量
7、半導體製冷阱的設計
8、簡易微型半導體恆溫器的設計
9、簡易微型半導體製冷器的設計
10、簡易微型溫差發電模塊的設計
11、簡易微型溫差照明系統的設計
Ⅳ、光纖特性與照明模塊(系統)
1、光敏元件的光敏特性研究
2、端面發光光纖傳輸特性測量與照明設計
3、通體發光光纖傳輸特性測量與照明設計
4、流星光纖傳輸特性測量與照明設計
5、照明顏色控制
6、光纖一維尋光與照明系統設計(電動式、機械式、一維)
Ⅴ、室內外環境控制和安防模塊(系統)
1、紅外砷化鎵發光二極體物性測量
2、熱釋電感測器的物性測量
3、光電二極體的物性測量
4、智能節能百葉窗設計(根據氣候環境進行採光的智能控制)
5、室內環境智能調控設計(利用通風、採光、開啟家用電器調控室內宜人環境)
6、簡易紅外安防系統的設計
7、熱釋電報警器的設計
Ⅵ、環境監測和溫室控制模塊(系統)
1、數字風向和風速儀的設計
2、環境溫度與濕度監測儀的設計
3、土壤溫、濕度和PH值監測儀的設計
4、太陽光譜分析儀的設計
5、簡易紫外線輻射測試儀的設計
6、簡易空氣污染監測儀的設計
7、簡易微型環境監測站的設計
8、簡易微型無人職守野外科考監測站的設計
Ø 實驗配置
光電效應模塊、光熱效應模塊、溫差效應模塊、光纖特性與照明模塊、環境控制和安防模塊、環境監測和溫室控制模塊、採集系統、顯示系統、相關軟體、儀器說明書、實驗講義 設備名稱: 光伏電池組件生產實訓系統 設備編號: HIK-SCPL (1)生產線運行的基本工藝路線
Ø 准備材料: 將所需原材料准備到位.
Ø 焊接電池: 將電池片檢測分檔,並焊接在一起,形成電池串.
Ø 材料裁切: 將EVA. TPT. 焊帶,匯流條按設計尺寸進行切割.
Ø 組件鋪設: 將准備好的材料按照技術要求進行排版, 疊放,形成待層壓組件.
Ø 組件層壓: 將准備好的待層壓組件在層壓機中層壓和固化.
Ø 裝框: 裁掉組件邊緣的多餘部分並進行初檢, 組裝上邊框和接線盒,完成組件層壓.
Ø 性能測試: 測試層壓後組件光電性能,並按要求分選.
Ø 品質測試: 在製作過程中執行其他測試, IV 曲線測試,外觀和高電壓隔離.
Ø 入庫: 合格品入庫,不合格品進行修復.
主要原材料
① 鋼化玻璃
②電池片
③EVA
④TPT
⑤接線盒
⑥焊帶,匯流條
⑦鋁合金邊框及附屬件
⑧密封硅膠
(2)實驗室內設備安裝模式
(3)組件生產線設備清單 序號 名稱 單位 數量 1 半自動組件層壓機(固化、修復一體) 台 1 2 太陽電池組件測試儀 台 1 3 玻璃清洗機 台 1 4 YAG激光劃片機 台 1 5 組框裝框機 台 1 6 待壓組件周轉車 台 2 7 待裝組件周轉車 台 2 8 焊接台(每台含有2個單焊工位,1個串焊工位,集中風道,加熱溫度控制系統) 台 4 9 鋪設台(含太陽能模擬光源、粗檢測系統) 台 2 10 工作台(修邊,清潔)EVA、TPT裁剪工作台 台 2 11 單片分選機 台 1
㈢ 太陽能跟蹤控制器的原理
由於地球的自轉,相對於某一個固定地點的太陽能光伏發電系統,一年春夏秋冬四季、每天日升日落,太陽的光照角度時時刻刻都在變化,有效的保證太陽能電池板能夠時刻正對太陽,發電效率才會達到最佳狀態。目前世界上通用的太陽能跟蹤控制器都需要根據安放點的經緯度等信息計算一年中的每一天的不同時刻太陽所在的角度,將一年中每個時刻的太陽位置存儲到PLC、單片機或電腦軟體中,都要靠計算該固定地點每一時刻的太陽位置以實現跟蹤。採用的是電腦數據理論,需要地球經緯度地區的的數據和設定,一旦安裝,就不便移動或裝拆,每次移動完就必須重新計算參數、設定數據和調整各個參數;原理、電路、技術、設備都很復雜,非專業人士不能夠隨便操作。河北某光伏發電設備公司獨家研發出了具有世界領先水平、不用計算各地太陽位置數據、無軟體、不怕陰天、雷雨、多雲等各種惡劣天氣、已經預設系統設備保護程序、防塵效果好、抗風能力強、簡單易用、成本低廉、可在移動設備上隨時隨地准確跟蹤太陽的智能太陽能跟蹤控制器。該太陽能跟蹤控制器在該公司第一代跟蹤儀的技術基礎上,綜合各地各種環境下的使用情況,對太陽能跟蹤控制器進行了全面的升級和改進,使該太陽能跟蹤控制器成為全天候、全功能、超節能、智能型太陽能跟蹤控制器。該太陽能跟蹤控制器具有常態(好天氣情況)下的對日跟蹤狀態和惡劣氣候條件下的系統自我保護裝態以及從自我保護狀態自動快速轉為常態對日跟蹤三種情形。
該太陽能跟蹤控制器是國內首家完全不用電腦軟體的太陽空間定位跟蹤儀,增加了GPS定位系統,具有國際領先水平,能夠不受地域、天氣狀況和外部條件的限制,可以在-50℃至70℃環境溫度范圍內正常使用;跟蹤精度可以達到±0.001°,最大限度的提高太陽跟蹤精度,完美實現適時跟蹤,最大限度提高太陽光能利用率。該太陽能跟蹤控制器可以廣泛的使用於各類設備的需要使用太陽跟蹤的地方,該太陽能跟蹤控制器價格實惠、性能穩定、結構合理、跟蹤准確、方便易用。把加裝了太陽能跟蹤控制器的太陽能發電系統安裝在高速行駛的汽車、火車,以及通訊應急車、特種軍用汽車、軍艦或輪船上,不論系統向何方行駛、如何調頭、拐彎,該太陽能跟蹤控制器都能保證設備的要求跟蹤部位正對太陽!該太陽能跟蹤控制技術屬於具有我國自主知識產權的國家發明專利產品,發明專利申請號:200610146201.8 ,現已大批量投產。
㈣ 跟蹤式光伏支架比固定式光伏支架發電量能增加多少
固定支架系統在國內應用較為廣泛,其優勢在於價格低廉,結構穩定,後期基本免維護。但對於光伏系統而言,年平均日照時數較低。跟蹤式支架通過追蹤太陽高度角和方位角以達到增加太陽能輻射,從而增加發電量的目的,其優勢在於年平均日照時數高,但先期投資成本較高,後期需要一定的維護。並且光伏組件的安裝傾角越大,設計的方陣間距也越大,相同裝機容量所需土地也越多。並且傾角可調支架需要根據季節對支架進行調節,從而增加了人工運維的成本。以1MW電站為例,每調節一次所需人工費用約為千元以上。因此,不同的地區增加的不一樣,這是由於地區不一樣,安裝最佳光照角度也不一樣,跟蹤調整的次數也不一樣,光伏組件安裝傾角是影響光伏系統發電量的重要因素,同時也是影響光伏方陣行距的重要因素。在調整角度方面我們結合太陽的運動規律,研究傾角可調支架一年調整2次(暖季和寒季)和4次(春季、夏季、秋季和冬季)傾角的方式。根據天文劃分四季法,結合每年「兩分」、「兩至」的時間,確定一年調整2次傾角的時間段為4-9月(暖季)和10-3月(寒季);一年調整4次傾角的時間段為3-5月(春季),6-8月(夏季),9-11月(秋季)和12-2月(冬季);調整時間為每個時間段的開始。據西安的都安光伏發電那裡了解到的一個例子就是在華北地區採用傾角可調支架比固定式光伏支架發電量大概能增加4%左右以上的電量,而在我國南方預計只能增加3%左右的電量。所以綜合考慮成本比如我們西安都安光伏發電做的一般都是固定式的,據說市面上有自動調節的萬向聯軸器+智能控製程序結合方式的設備可以進行自動調節,但無形中增加了成本。
㈤ 光伏發電研究方法,公式原理
光伏發電研究方法:第一類:基於歷史氣象數據和光伏發電量數據的研究,接受統計學方法進行分析建模;第二類:基於衛星雲圖資料數據和地面監測資料數據,通過衛星、雷達圖象處理,計算出實時太陽能輻射的預報方法;第三類:基於數值天氣預報的猜測方法。
原理:光伏發電的主要原理是半導體的光電效應。光子照射到金屬上時,它的能量可以被金屬中某個電子全部吸收,電子吸收的能量足夠大,能克服金屬原子內部的庫侖力做功,離開金屬表面逃逸出來,成為光電子。硅原子有4個外層電子,如果在純硅中摻入有5個外層電子的原子如磷原子,就成為N型半導體;若在純硅中摻入有3個外層電子的原子如硼原子,形成P型半導體。當P型和N型結合在一起時,接觸面就會形成電勢差,成為太陽能電池。當太陽光照射到P-N結後,電流便從P型一邊流向N型一邊,形成電流。
㈥ 光伏智能跟蹤,你了解有多少
由於光伏電站安裝的地點一般環境比較惡劣,對電子元器件的壽命影響很大,這樣使得光伏跟蹤支架這一塊可靠性很差,整個電站的維護成本會很高。而且隨著新政電費補貼的取消,使得整個EPC都在壓縮成本,組件已經跌破2元,跟蹤支架本身成本高,難以下降,可能以後市場會越來越小。
㈦ 目前光伏並網發電設備中常用的MPPT(最大功率點)跟蹤的方法有哪些
一般常用擾動觀察法(P&O),導納增量法(INCond)。
還有並聯功率補償法;結合常規演算法的復合MPPT演算法;電流掃描法;短路電流脈沖法;Fibonacci搜索法;基於狀態空間的MPPT演算法等。
詳細內容可參考http://wenku..com/view/39cec41eb7360b4c2e3f6439.html
㈧ 如何實現最大功率跟蹤
MPPT控制器是一款太陽能離網系統帶有最大功率跟蹤的太陽能控制器。控制器的特點就是智能跟蹤演算法,來獲取太陽能電池組件的最大功率點,可以防止蓄電池過度放電而造成損壞。
光伏系統應用的基本形式可分為兩大類:獨立發電系統和並網發電系統。應用主要領域主要在太空航空器、通信系統、微波中繼站、電視差轉台、光伏水泵和無電缺電地區戶用供電。
光伏系統由以下三部分組成:太陽電池組件;太陽能充放電控制器、逆變器、測試儀表和計算機監控等電力電子設備和蓄電池或其它蓄能和輔助發電設備。
MPPT太陽能控制器利用最大功率點跟蹤技術從太陽能陣列中提取最大的功率為蓄電池充電。最大功率點跟蹤方式完全自動,不需要用戶調整。最大功率點會隨著環境條件而自動變化時,控制器自動跟蹤陣列最大功率點,確保從太陽能陣列中獲取一天中最大的能量。
多數情況下,最大功率點跟蹤技術將「提高」太陽能發電系統的充電電流。例如,一個系統可能有8安培的電流自太陽能陣列流入到MPPT太陽能控制器,有10安培的電流從MPPT太陽能控制器流出到蓄電池。MPPT太陽能控制器不產生電流!輸入MPPT太陽能控制器的能量和其輸出能量相等。
限制最大功率點跟蹤控制器效率的因素。太陽能光伏陣列的Vmp會隨著陣列的溫度升高而降低。在炎熱的天氣里,Vmp可能接近甚至低於蓄電池電壓。在這種情況下,與傳統控制器相比,MPPT太陽能控制器將很少或幾乎不能獲取能量。然而,只要系統光伏組件的標稱電壓高於蓄電池組電壓,光伏組件的Vmp總會高於蓄電池電壓。此外,由於減小了太陽能陣列的電流,使布線有所節省,從而使MPPT太陽能控制器即使在炎熱的天氣里也有明顯優勢。
㈨ 簡述光伏發電系統的最大功率點跟蹤控制
太陽能電池的輸出功率會隨著日照強度和太陽能電池表面溫度的改變而變化。對於這種變化,使太陽能電池的工作點總是跟蹤最大功率點而進行變化,控制太陽能電池產生最大功率的這種控制被稱為最大功率跟蹤(Maximum Power Point Tracking,MPPT)控制。
使功率調節器的直流工作電壓每隔一定時間稍微變動一點,然後通過MPPT控制測量太陽能電池的輸出功率並與前一次的值進行比較,即總是向輸出電力變大的方向變化功率調節器的直流電壓,以確保從太陽能電池獲得最大的輸出功率。
MPPT控制的例子如圖所示。例如,在A點將工作電壓從V1變化到V2,工作點為B,輸出功率從P1變化到P2,輸出功率變大。接下來如果工作電壓從V2降到V1,則工作點再次返回到A點,輸出功率返回到P1。從這樣的變化可以看出,由於V2的輸出功率大於V1,把工作電壓變到V2處。還有,工作點在D點的場合,工作電壓V3比V4的輸出功率大,把工作電壓變到V3處。這樣,通過連續不斷的這種控制,工作點就能保證在太陽能電池的最大功率點上。
㈩ 有關於光伏發電中最大功率點跟蹤問題
所謂光伏發電的最大跟蹤點跟蹤(MPPT)
是指在光伏發電系統中,光伏電池的利用率除了與光伏電池的內部特性由關外,還收使用環境如輻照度、負載和溫度等因素的影響。在不同的外界條件下,光伏電池殼運行在不同且唯一的最大功率點(MPP)上。因此,對於光伏發電系統來說,應當尋求電池板的最佳工作狀態,最大限度進行光電轉換。利用控制方法實現電池板的最大功率輸出運行的技術為最大跟蹤點跟蹤(MPPT)技術。
實為一種控制技術,即演算法,屬逆變器內部功能,非外部單列控制器。
至於你所說的DC-DC部分應該指的是Boost變換。
傳統的MPPT方法依據判斷方法和准則的不同分為開環和閉環MPPT方法。開環又包含定電壓跟蹤法、短路電流比例系數法、差值計演算法;閉環包含擾動觀測法、電導增量法(INC)。到現在還有了智能MPPT方法。
並網逆變器按實現MPPT跟蹤的不同拓撲和實現位置主要分兩類:兩級式並網光伏和單級式並網光伏。
兩級式:電池板輸出的直流電通過前級Boost變換升壓後在輸出給後級的網側逆變器,通過控制將網側逆變器輸出的交流電並入電網。由於兩級式並網光伏逆變器中存在兩個功率變換單元,因此最大功率跟蹤點控制可以由前級的Boost完成,也可由後級的網側逆變器完成。而含有DC-DC變換的應是基於前級的MPPT控制,也是實際中較為常見的控制方案,這種控制,前級的Boost實現MPPT控制,後級實現直流母線穩壓控制。
單級式:MPPT、電網電壓同步和輸出電流正弦控制等均直接由DC-AC環節來實現,控制相對復雜。
再細分就多了,大體就是這個結構,希望能對你由幫助,如有不明白的,可追問。