導航:首頁 > 研究方法 > 現在高中數學的研究方法有哪些

現在高中數學的研究方法有哪些

發布時間:2022-05-10 08:36:16

⑴ 高中數學的要點及解決方法

主要包括化簡、求值、方程、不等式、函數等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。

具體轉化方法有:

①分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。

②零點分段討論法:適用於含一個字母的多個絕對值的情況。

③兩邊平方法:適用於兩邊非負的方程或不等式。

④幾何意義法:適用於有明顯幾何意義的情況。


穿線法是解高次不等式和分式不等式的最好方法。其一般思路是:

首項化正

求根標根

右上起穿

奇穿偶回


注意:①高次不等式首先要用移項和因式分解的方法化為「左邊乘積、右邊是零」的形式。②分式不等式一般不能用兩邊都乘去分母的方法來解,要通過移項、通分合並、因式分解的方法化為「商零式」,用穿線法解。

⑵ 高中數學的基本思想方法有哪些

1、函數方程思想

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組)。

然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程。

求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題。

經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解決問題中。

善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系。

構造出函數原型。另外,方程問題、不等式問題、集合問題、數列問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

2、數形結合思想

「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。

例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。

3、分類討論思想

當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。

4、方程思想

當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。

5、整體思想

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。

整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

6、化歸思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作圖等數學理論無不滲透著轉化的思想。

常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。

轉化思想亦可在狹義上稱為化歸思想。化歸思想就是將待解決的或者難以解決的問題A經過某種轉化手段,轉化為有固定解決模式的或者容易解決的問題B,通過解決問題B來解決問題A的方法。

7、隱含條件思想

沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。

8、類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。

9、建模思想

為了更具科學性,邏輯性,客觀性和可重復性地描述一個實際現象,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。

使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。

10、歸納推理思想

由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理。

另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。

如何學好高中數學的方法和技巧

中數學學習,有一個有效的方法,就是重視每一次數學作業,並從做作業的過程中找到自己的思維漏洞。

數學作業是對課堂教學最重要的的補充。做數學作業時可以認真研究一下自己的思維弱點,找到這個「漏洞」並打好「補丁」,這樣數學思維才能不斷提高。

學數學時,可以分析一下每次作業中因為粗心而做錯的題目,然後試著分析一下這些錯題的共同點,這樣一來也就找到了思維上的「漏洞」。日後做題再次遇到相同題型時,不妨先讓思考幾秒鍾,回憶之前的解題方法,然後再繼續做題,正確率也就大大提高了。

事實上任何人在做數學題時,都會存在一定的思維漏洞,比如有些人經常將題目看錯,有些人解證明題經常犯錯,有些人在計算過程中經常出現失誤等等。在數學學習中只要我們能夠養成在做作業的過程中發現自己思維漏洞的習慣,然後有針對性地去打「補丁」,那麼我們也就找到了提高數學成績的途徑。

而且做數學作業要靜下心來,將平時的每次數學作業都當成考試,這樣才能培養出細心嚴謹的學習習慣。這也是學霸和普通學生之間最突出的一個差別。唯有平時細心嚴謹,才能在考試中少犯錯,拿高分。

⑷ 高中數學必修一的數學方法

高中跟初中不同,高中的知識點很多,而且延伸也很多。不能鬆懈。我高中數學學的還不錯。總是一百三十五以上。大多都是馬虎大意的失分。我的方法也很簡單。希望對你有幫助。
首先,我總是把書的概念弄得很熟,而且充分理解。比如,高一主要是函數,函數是基礎。函數概念,奇偶性,初等函數等。
第二,書上的例題我很重視,總是研究。例題都是出示了基本的應用方法和解題思維。主要看思維和方法,若有條件可以跟個輔導班去學,拓展自身的學習思維,我就是這么過來的,可以參考下
第三,做習題。數學習題的練習是不可少的。但是也不要啥題都做,會做很多無用功。做書上的習題,高考題型等,一般都出題很規范。從易到難。
第四,要學會獨立思考。不要事事去問別人。不要總看答案會形成依賴。多思考,有自己的思考體系很重要。也會鍛煉大腦。
第五 那裡不會練那裡。
針對題型,針對知識點,不會的地方進行專項練習。現在有個詞叫刻意練習。說的就是這個

⑸ 解決高中數學問題的各種方法

第一:函數與方程思想(1)函數思想是對函數內容在更高層次上的抽象,概括與提煉,在研究方程、不等式、數列、解析幾何等其他內容時,起著重要作用 (2)方程思想是解決各類計算問題的基本思想,是運算能力的基礎高考把函數與方程思想作為七種重要思想方法重點來考查第二:數形結合思想:(1)數學研究的對象是數量關系和空間形式,即數與形兩個方面(2)在一維空間,實數與數軸上的點建立一一對應關系 在二維空間,實數對與坐標平面上的點建立一一對應關系數形結合中,選擇、填空側重突出考查數到形的轉化,在解答題中,考慮推理論證嚴密性,突出形到數的轉化第三:分類與整合思想(1)分類是自然科學乃至社會科學研究中的基本邏輯方法(2)從具體出發,選取適當的分類標准(3)劃分只是手段,分類研究才是目的(4) 有分有合,先分後合,是分類整合思想的本質屬性(5) 含字母參數數學問題進行分類與整合的研究,重點考查學生思維嚴謹性與周密性第四:化歸與轉化思想(1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題(2)靈活性、多樣性,無統一模式,利用動態思維,去尋找有利於問題解決的變換途徑與方法(3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化第五: 特殊與一般思想(1)通過對個例認識與研究,形成對事物的認識(2)由淺入深,由現象到本質、由局部到整體、由實踐到理論(3)由特殊到一般,再由一般到特殊的反復認識過程(4) 構造特殊函數、特殊數列,尋找特殊點、確立特殊位置,利用特殊值、特殊方程(5) 高考以新增內容為素材,突出考查特殊與一般思想必成為命題改革方向第六:有限與無限的思想:(1)把對無限的研究轉化為對有限的研究,是解決無限問題的必經之路 (2)積累的解決無限問題的經驗,將有限問題轉化為無限問題來解決是解決的方向(3)立體幾何中求球的表面積與體積,採用分割的方法來解決,實際上是先進行有限次分割,再求和求極限,是典型的有限與無限數學思想的應用(4)隨著高中課程改革,對新增內容考查深入,必將加強對有限與無限的考查第七:或然與必然的思想:(1)隨機現象兩個最基本的特徵,一是結果的隨機性,二是頻率的穩定性(2)偶然中找必然,再用必然規律解決偶然(3)等可能性事件的概率、互斥事件有一個發生的概率、相互獨立事件同時發生的概率、獨立重復試驗、隨機事件的分布列、數學期望是考查的重點
其實你這么籠統的問是不對的,要具體問題具體分析。因為有的方法只是面向范圍很窄的一些問題的,沒有一個是通用的解題思想,只能針對具體的問題進行分析。你明白嗎?雖然你的出發點是好的,但是數學只能慢慢學習的,欲速則不達。平時注意總結吧!

⑹ 如何學好高中數學學習方法有哪些

怎樣學好高中數學?首先要摘要答題技巧

現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?

高中數學試卷

怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.

⑺ 數學有哪些分類就是有多少種不同的研究方法

數學物理方法即偏微分,圖論中的演算法,計算數學中的方法,運籌學中的,還有生命周期序列,時間序列,這些課程中都有案例和說明,方法很多,其實具體的題有具體的方法,有的題貌似很難,其實你數學學的好,一看題意就知道它的考點是什麼,小心陷井,一步可解

⑻ 如何掌握高中數學的四種思維方法

一、函數方程思想
函數方程思想就是用函數、方程的觀點和方法處理變數或未知數之間的關系,從而解決問題的一種思維方式,是很重要的數學思想.
1.函數思想:把某變化過程中的一些相互制約的變數用函數關系表達出來,並研究這些量間的相互制約關系,最後解決問題,這就是函數思想;
2.應用函數思想解題,確立變數之間的函數關系是一關鍵步驟,大體可分為下面兩個步驟:(1)根據題意建立變數之間的函數關系式,把問題轉化為相應的函數問題;(2)根據需要構造函數,利用函數的相關知識解決問題;(3)方程思想:在某變化過程中,往往需要根據一些要求,確定某些變數的值,這時常常列出這些變數的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;
3.函數與方程是兩個有著密切聯系的數學概念,它們之間相互滲透,很多方程的問題需要用函數的知識和方法解決,很多函數的問題也需要用方程的方法的支援,函數與方程之間的辯證關系,形成了函數方程思想.
二、數形結合思想
數形結合是中學數學中四種重要思想方法之一,對於所研究的代數問題,有時可研究其對應幾何的性質使問題得以解決(以形助數);或者對於所研究的幾何問題,可藉助於對應圖形的數量關系使問題得以解決(以數助形),這種解決問題的方法稱之為數形結合.
1.數形結合與數形轉化的目的是為了發揮形的生動性和直觀性,發揮數的思路的規范性與嚴密性,兩者相輔相成,揚長避短.
2.恩格斯是這樣來定義數學的:「數學是研究現實世界的量的關系與空間形式的科學」.這就是說:數形結合是數學的本質特徵,宇宙間萬事萬物無不是數和形的和諧的統一.因此,數學學習中突出數形結合思想正是充分把握住了數學的精髓和靈魂.
3.數形結合的本質是:幾何圖形的性質反映了數量關系,數量關系決定了幾何圖形的性質.
4.華羅庚先生曾指出:「數缺形時少直觀,形少數時難入微;數形結合百般好,隔裂分家萬事非.」數形結合作為一種數學思想方法的應用大致分為兩種情形:或藉助於數的精確性來闡明形的某些屬性,或者藉助於形的幾何直觀性來闡明數之間的某種關系.
5.把數作為手段的數形結合主要體現在解析幾何中,歷年高考的解答題都有關於這個方面的考查(即用代數方法研究幾何問題).而以形為手段的數形結合在高考客觀題中體現.
6.我們要抓住以下幾點數形結合的解題要領:
(1) 對於研究距離、角或面積的問題,可直接從幾何圖形入手進行求解即可;
(2) 對於研究函數、方程或不等式(最值)的問題,可通過函數的圖象求解(函數的零點,頂點是關鍵點),作好知識的遷移與綜合運用;
(3) 對於以下類型的問題需要注意:可分別通過構造距離函數、斜率函數、截距函數、單位圓x2+y2=1上的點及餘弦定理進行轉化達到解題目的.
三、分類討論的數學思想
分類討論是一種重要的數學思想方法,當問題的對象不能進行統一研究時,就需要對研究的對象進行分類,然後對每一類分別研究,給出每一類的結果,最終綜合各類結果得到整個問題的解答.
1.有關分類討論的數學問題需要運用分類討論思想來解決,引起分類討論的原因大致可歸納為如下幾種:
(1)涉及的數學概念是分類討論的;
(2)運用的數學定理、公式、或運算性質、法則是分類給出的;
(3)求解的數學問題的結論有多種情況或多種可能性;
(4)數學問題中含有參變數,這些參變數的不同取值導致不同的結果的;
(5)較復雜或非常規的數學問題,需要採取分類討論的解題策略來解決的.
2.分類討論是一種邏輯方法,在中學數學中有極廣泛的應用.根據不同標准可以有不同的分類方法,但分類必須從同一標准出發,做到不重復,不遺漏,包含各種情況,同時要有利於問題研究.
四、化歸與轉化思想
所謂化歸思想方法,就是在研究和解決有關數學問題時採用某種手段將問題通過變換使之轉化,進而達到解決的一種方法.一般總是將復雜的問題通過變化轉化為簡單的問題,將難解問題通過變換轉化為容易求解的問題,將未解決的問題轉化為已解決的問題.

⑼ 高中數學解題方法有哪些

1、配方法
把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

⑽ 高中數學,研究圖形的基本方法有哪些啊請大神解答

研究圖形即是要研究組成圖形的點、線、面之間的位置關系和數量關系。可「演算法」化的方法是坐標法(向量法),也是研究圖表的基本方法,而依賴於空間想像能力的方法主要看個人的能力了。

閱讀全文

與現在高中數學的研究方法有哪些相關的資料

熱點內容
排污泵安裝方法 瀏覽:417
推薦教學方法考點 瀏覽:768
生完孩子磨牙的原因和解決方法 瀏覽:402
頸腰按摩器使用方法 瀏覽:218
一筆畫月季花最簡單的方法 瀏覽:338
雨井與管道連接方法 瀏覽:682
a2圖紙折疊方法視頻 瀏覽:714
用手機鍛煉的方法 瀏覽:512
貼牆倒立的正確方法 瀏覽:282
電磁治療儀器使用方法 瀏覽:251
科學研究方法通常有哪些 瀏覽:813
折紙最簡單的方法小星星的折法 瀏覽:644
游泳中暑的症狀及治療方法 瀏覽:839
防靜電表測量方法 瀏覽:271
完善高中教學方法 瀏覽:831
鼠年茅台鑒別方法 瀏覽:385
手機殼包漿方法 瀏覽:431
羽毛球空手訓練方法 瀏覽:387
在雲南種菜有哪些方法 瀏覽:101
前列腺增生是有哪些治療方法 瀏覽:555