導航:首頁 > 研究方法 > 高效液相色譜分析方法的分離模式

高效液相色譜分析方法的分離模式

發布時間:2022-05-07 16:46:09

❶ 高效液相色譜的原理及分析方法

原理主要有這幾種:
液—液分配色譜法
(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography) 流動相和固定相都是液體。流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。達到平衡時,服從於高效液相色譜計算公式: 高效液相色譜計算公式
式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。 a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。 b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。 c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。現在應用很廣泛(70~80%)。
液—固色譜法
流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下:Xm nSa ====== Xa nSm 式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。 當吸附競爭反應達平衡時: K=[Xa][Sm]/[Xm][Sa] 式中:K為吸附平衡常數。[討論:K越大,保留值越大。]
離子交換色譜法
(Ion-exchange Chromatography) IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流 離子交換色譜柱
動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。以陰離子交換劑為例,其交換過程可表示如下: X-(溶劑中) (樹脂-R4N Cl-)=== (樹脂-R4N X-) Cl- (溶劑中) 當交換達平衡時: KX=[-R4N X-][ Cl-]/[-R4N Cl-][ X-] 分配系數為: DX=[-R4N X-]/[X-]= KX [-R4N Cl-]/[Cl-] [討論:DX與保留值的關系] 凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。
離子對色譜法
(Ion Pair Chromatography) 離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。其原 離子色譜儀流程示意
理可用下式表示:X 水相 Y-水相 === X Y-有機相 式中:X 水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X Y---形成的離子對化合物。 當達平衡時: KXY = [X Y-]有機相/[ X ]水相[Y-]水相 根據定義,分配系數為: DX= [X Y-]有機相/[ X ]水相= KXY [Y-]水相 [討論:DX與保留值的關系] 離子對色譜法(特別是反相)發解決了以往難以分離的混合物的分離問題,諸如酸、鹼和離子、非離子混合物,特別是一些生化試樣如核酸、核苷、生物鹼以及葯物等分離。
離子色譜法
(Ion Chromatography) 用離子交換樹脂為固定相,電解質溶液為流動相。以電導檢測器為通用檢測器,為消除流動相中強電解質背景離子對電導檢測器的干擾,設置了抑制柱。試樣組分在分離柱和抑制柱上的反應原理與離子交換色譜法相同。 以陰離子交換樹脂(R-OH)作固定相,分離陰離子(如Br-)為例。當待測陰離子Br-隨流動相(NaOH)進入色譜柱時,發生如下交換反應(洗脫反應為交換反應的逆過程): 擔體圖示
抑制柱上發生的反應: R-H Na OH- === R-Na H2O R-H Na Br- === R-Na H Br- 可見,通過抑制柱將洗脫液轉變成了電導值很小的水,消除了本底電導的影響;試樣陰離子Br-則被轉化成了相應的酸H Br-,可用電導法靈敏的檢測。 離子色譜法是溶液中陰離子分析的最佳方法。也可用於陽離子分析。
空間排阻色譜法
(Steric Exclusion Chromatography) 空間排阻色譜法以凝膠 (gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。
分析方法:
綜述
色譜柱的填料和流動相的組分應按各品種項下的規定.常用的色譜柱填料有硅膠和化學鍵合硅膠。後者以十八烷基硅烷鍵合硅膠最為常用,辛基鍵合硅膠次之,氰基或氨基鍵合硅膠也有使用;離子交換填料,用於離子交換色譜;凝膠或玻璃微球等,用於分子排阻色譜等。注樣量一般為數微升。除另有規定外,柱溫為室溫,檢測器為紫外吸收檢測器。 在用紫外吸收檢測器時,所用流動相應符合紫外分光光度法項下對溶劑的要求。 正文中各品種項下規定的條件除固定相種類、流動相組分、檢測器類型不得任意改變外,其餘如色譜柱內徑、長度、固定相牌號、載體粒度、流動相流速、混合流動相各組分的比例、柱溫、進化學鍵合固定相反應
樣量、檢測器的靈敏度等,均可適當改變, 以適應具體品種並達到系統適用性試驗的要求。一般色譜圖約於20分鍾內記錄完畢。 2.系統適用性試驗 按各品種項下要求對儀器進行適用性試驗,即用規定的對照品對儀器進行試驗和調整,應達到規定的要求;或規定分析狀態下色譜柱的最小理論板數、分離度和拖尾因子.
色譜柱的理論板數
在選定的條件下,注入供試品溶液或各品種項下規定的內標物質溶液,記錄色譜圖化學鍵合固定相應用
,量出供試品主成分或內標物質峰的保留時間t(R)和半高峰寬W(h/2),按n=5.54[t(R)╱W(h/2)]^2計算色譜柱的理論板數,如果測得理論板數低於各品種項下規定的最小理論板數,應改變色譜柱的某些條件(如柱長、載體性能、色譜柱充填的優劣等),使理論板數達到要求。
分離度
定量分析時,為便於准確測量,要求定量峰與其他峰或內標峰之間有較好的分離度。分離度(R)的計算公式為: 2[t(R2)-t(R1)] ,R= -W1+W2 式中 t(R2)為相鄰兩峰中後一峰的保留時間; t(R1)為相鄰兩峰中前一峰的保留時間; W1及W2為此相鄰兩峰的峰寬。 除另外有規定外,分離度應大於1.5。
拖尾因子
為保證測量精度,特別當採用峰高法測量時,應檢查待測峰的拖尾因子(T)是否符合各品種項下的規定,或不同濃度進樣的校正因子誤差是否符合要求。拖尾因子計算公式為: W(0.05h) T=-2d1 式中 W(0.05h)為0.05峰高處的峰寬; d1為峰極大至峰前沿之間的距離。 除另有規定外,T應在0.95~1.05間。 也可按各品種校正因子測定項下,配製相當於80%、100%和120%的對照品溶液,加入規定量的內標溶液,配成三種不同濃度的溶液,分別注樣3次,計算平均校正因子,其相對標准偏差應不大於2.0%。

❷ 高效液相色譜法的原理是什麼

高效液相色譜法的原理是以液體為流動相,採用高壓輸液系統,將具有不同極性的單一溶劑或不同比例的混合溶劑、緩沖液等流動相泵入裝有固定相的色譜柱,在柱內各成分被分離後,進入檢測器進行檢測。

高效液相色譜法有「四高一廣」的特點:

①高壓:流動相為液體,流經色譜柱時,受到的阻力較大,為了能迅速通過色譜柱,必須對載液加高壓。

②高速:分析速度快、載液流速快,較經典液體色譜法速度快得多,通常分析一個樣品在15~30分鍾,有些樣品甚至在5分鍾內即可完成,一般小於1小時。

③高效:分離效能高。可選擇固定相和流動相以達到最佳分離效果,比工業精餾塔和氣相色譜的分離效能高出許多倍。

④高靈敏度:紫外檢測器可達0.01ng,進樣量在μL數量級。

⑤應用范圍廣:百分之七十以上的有機化合物可用高效液相色譜分析,特別是高沸點、大分子、強極性、熱穩定性差化合物的分離分析,顯示出優勢。

(2)高效液相色譜分析方法的分離模式擴展閱讀

高效液相色譜還有色譜柱可反復使用、樣品不被破壞、易回收等優點,但也有缺點,與氣相色譜相比各有所長,相互補充。高效液相色譜的缺點是有「柱外效應」。

在從進樣到檢測器之間,除了柱子以外的任何死空間(進樣器、柱接頭、連接管和檢測池等)中,如果流動相的流型有變化,被分離物質的任何擴散和滯留都會顯著地導致色譜峰的加寬,柱效率降低。高效液相色譜檢測器的靈敏度不及氣相色譜。

空間排阻色譜法以凝膠(gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。

溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。

在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。

❸ 高效液相色譜法分離技術有哪幾種

有效的分離方法高效液相色譜法王君玲分離的方法是多種多樣的,如傳統的蒸餾結晶和萃取或抽提等,隨著生命科學各學科的崛起,新的分離技術應運而生,如離心電泳離子交換膜技術以及色譜技術等,近年來高效液相色譜法之發展尤其令人矚目。
色譜法也叫層析法,它是一種高效能的物理分離技術,將它用於分析化學並配合適當的檢測手段,就成為色譜分析法。

❹ 高效液相色譜法的主要類型有哪些

高效液相色譜法分為:液-固色譜法、液-液色譜法、離子交換色譜法、凝膠色譜法。
1、液-固色譜法(液-固吸附色譜法)
固定相是固體吸附劑,它是根據物質在固定相上的吸附作用不同來進行分配的。
①液-固色譜法的作用機制
吸附劑:一些多孔的固體顆粒物質,其表面常存在分散的吸附中心點。
流動相中的溶質分子X(液相)被流動相S帶入色譜柱後,在隨載液流動的過程中,發生如下交換反應:
X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用機制是溶質分子X(液相)和溶劑分子S(液相)對吸附劑活性表面的競爭吸附。
吸附反應的平衡常數K為:
K值較小:溶劑分子吸附力很強,被吸附的溶質分子很少,先流出色譜柱。 K值較大:表示該組分分子的吸附能力較強,後流出色譜柱。
發生在吸附劑表面上的吸附-解吸平衡,就是液-固色譜分離的基礎。
②液-固色譜法的吸附劑和流動相
常用的液-固色譜吸附劑:薄膜型硅膠、全多孔型硅膠、薄膜型氧化鋁、全多孔型氧化鋁、分子篩、聚醯胺等。
一般規律:對於固定相而言,非極性分子與極性吸附劑(如硅膠、氧化銅)之間的作用力很弱,分配比k較小,保留時間較短;但極性分子與極性吸附劑之間的作用力很強,分配比k大,保留時間長。
對流動相的基本要求: 試樣要能夠溶於流動相中 流動相粘度較小
流動相不能影響試樣的檢測
常用的流動相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。
③液-固色譜法的應用
常用於分離極性不同的化合物、含有不同類型或不;數量官能團的有機化合物,以及有機化合物的不同的異構體;但液-固色譜法不宜用於分離同系物,因為液-固色譜對不同相對分子質量的同系物選擇性不高。
2、液-液色譜法(液-液分配色譜法)
將液體固定液塗漬在擔體上作為固定相。
①液-液色譜法的作用機制 溶質在兩相間進行分配時,在固定液中溶解度較小的組分較難進入固定液,在色譜柱中向前遷移速度較快;在固定液中溶解度較大的組分容易進入固定液,在色譜柱中向前遷移速度較慢,從而達到分離的目的。
液-液色譜法與液-液萃取法的基本原理相同,均服從分配定律:K=C固/C液 K值大的組分,保留時間長,後流出色譜柱。
②正相色譜和反相色譜
正相分配色譜用極性物質作固定相,非極性溶劑(如苯、正己烷等)作流動相。 反相分配色譜用非極性物質作固定相,極性溶劑(如水、甲醇、己腈等)作流動相。
一般地,正相色譜是固定液的極性大於流動相的極性,而反相色譜是固定相的極性小於流動相的極性。正相色譜適宜於分離極性化合物,反相色譜則適宜於分離非極性或弱極性化合物。
③液-液色譜法的固定相 常用的固定液為有機液體,如極性的β,β′氧二丙腈(ODPN),非極性的十八烷(ODS)和異二十烷(SQ)等。
缺點:塗漬固定液容易被流動相沖掉。 採用化學鍵合固定相則可以避免上述缺點。
使固定濃與擔體之間形成化學鍵,例如在硅膠表面利用硅烷化反應:形成Si-O-Si-C型鍵,把固定液的分子結合到擔體表面上。
優點:
化學鍵合固定相無液坑,液層薄,傳質速度快,無固定液的流失。 固定液上可以結合不同的官能團,改善分離效能。 固定液不會溶於流動相,有利於進行梯度洗提。
④液-液色譜法的應用
液-液色譜法既能分離極性化合物,又能分離非極性化合物,如烷烴、烯烴、芳烴、稠環、染料、留族等化合物。化合物中取代基的數目或性質不同,或化合物的相對分子質量不同,均可以用液-液色譜進行分離。
3、離子交換色譜法
原理:離子交換色譜法是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的被測離子進行可逆交換,由於被測離子在交換劑上具有不同的親和力(作用力)而被分離。
①離子交換色譜法的作用機制
聚合物的分子骨架上連接著活性基團,如:-SO3-,-N(CH3)3+等。為了保持離子交換樹脂的電中性,活性基團上帶有電荷數相同但正、負號相反的離子X,稱為反離子。
②溶劑和固定相
兩種類型:多孔性樹脂與薄殼型樹脂。
多孔性樹脂:極小的球型離子交換樹脂,能分離復雜樣品,進樣量較大;缺點是機械強度不高,不能耐受壓力。
薄殼型離子交換樹脂:在玻璃微球上塗以薄層的離子交換樹脂,這種樹脂柱效高,當流動相成分發生變化時,不會膨脹或壓縮;缺點是但柱子容量小,進樣量不宜太多。
③離子交換色譜法的應用
主要用來分離離子或可離解的化合物,凡是在流動相中能夠電離的物質都可以用離子交換色譜法進行分離。
廣泛地應用於:無機離子、有機化合物和生物物質(如氨基酸、核酸、蛋白質等)的分離。 4.凝膚色譜法(空間排阻色譜法)
凝膠是一種多孔性的高分子聚合體,表面布滿孔隙,能被流動相浸潤,吸附性很小。凝膠色譜法的分離機制是根據分子的體積大小和形狀不同而達到分離目的。
①凝膠色譜法的作用機制
體積大於凝膠孔隙的分子,由於不能進入孔隙而被排阻,直接從表面流過,先流出色譜柱;小分子可以滲入大大小小的凝膠孔隙中而完全不受排阻,然後又從孔隙中出來隨載液流動,後流出色譜柱;中等體積的分子可以滲入較大的孔隙中,但受到較小孔隙的排阻,介乎上述兩種情況之間。
凝膠色譜法是一種按分子尺寸大小的順序進行分離的一種色譜分析方法。
②凝膠色譜法的固定相
軟質凝膠、半硬質凝膠和硬質凝膠三種。
③凝膠色譜法的應用特點
保留時間是分子尺寸的函數,適宜於分離相對分子質量大的化合物,相對分子質量在400~8×105的任何類型的化合物。
保留時間短,色譜峰窄,容易檢測。
固定相與溶質分子間的作用力極弱,趁於零,柱的壽命長。
不能分辨分子大小相近的化合物,分子量相差需在10%以上時才能得到分離。

❺ 高效液相色譜分析法的原理是什麼

它是用高壓輸液泵將具有不同極性的單一溶劑或不同比例的混合溶劑、緩沖液等流動相泵入裝有固定相的色譜柱,經進樣閥注入待測樣品,由流動相帶入柱內,在柱內各成分被分離後,依次進入檢測器進行檢測,從而實現對試樣的分析。

❻ 高校液相色譜分離原理是什麼

分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離,分離過程是一個分配平衡過程。

高效液相色譜主要有4種,下面分別描述一下。

1、液-固吸附色譜。固定相是固體吸附劑,它是根據物質在固定相是吸附作用差異來分離的。吸附作用越強,K值越大保留時間越長。

2、液-液分配色譜。顧名思義,它是將固定液塗在擔體上作為固定相的,它的分離原理與液液萃取的原理相同,從而服從分配定律。在固定液中溶解度大,K值大,保留時間長

3、離子交換色譜。是離子交換樹脂上可電離的離子與具有相同電荷的被測離子可逆交換,由於被測離子在不同交換劑上具有不同的親和力而使子分離,親和力越強,K值越大保留時間越長。

4、排阻色譜。固定相是多孔凝膠,內布孔隙,分子大於孔隙的不能進入固定相,直接從表面流過,幾乎沒有保留,小分子的物質可自由進出孔隙完全不受排阻,保留時間長。中等體積的分子介於兩種情況之間。分離順序只與分子的尺寸有關。

對於反相色譜,極性越小的物質,流動相的極性越大,保留時間越長。極性越小的物質,流動相的極性越小,保留時間越短。對於極性大的物質來說,流動相的極性對其保留時間影響較小,而正相色譜正好相反。

❼ 高效液相色譜分析法的分析原理

由泵將儲液瓶中的溶劑吸入色譜系統,然後輸出,經流量與壓力測量之後,導入進樣器。被測物由進樣器注入,並隨流動相通過色譜柱,在柱上進行分離後進入檢測器,檢測信號由數據處理設備採集與處理,並記錄色譜圖。廢液流入廢液瓶。遇到復雜的混合物分離(極性范圍比較寬)還可用梯度控制器作梯度洗脫。這和氣相色譜的程序升溫類似,不同的是氣相色譜改變溫度,
而HPLC改變的是流動相極性,使樣品各組分在最佳條件下得以分離。 同其他色譜過程一樣,HPLC也是溶質在固定相和流動相之間進行的一種連續多次交換過程。它借溶質在兩相間分配系數、親和力、吸附力或分子大小不同而引起的排阻作用的差別使不同溶質得以分離。
開始樣品加在柱頭上,假設樣品中含有3個組分,A、B和C,隨流動相一起進入色譜柱,開始在固定相和流動相之間進行分配。分配系數小的組分A不易被固定相阻留,較早地流出色譜柱。分配系數大的組分C 在固定相上滯留時間長,較晚流出色譜柱。組分B的分配系數介於A,C之間,第二個流出色譜柱。若一個含有多個組分的混合物進入系統,則混合物中各組分按其在兩相間分配系數的不同先後流出色譜柱,達到分離之目的。
不同組分在色譜過程中的分離情況,首先取決於各組分在兩相間的分配系數、吸附能力、親和力等是否有差異,這是熱力學平衡問題,也是分離的首要條件。其次,當不同組分在色譜柱中運動時,譜帶隨柱長展寬,分離情況與兩相之間的擴散系數、固定相粒度的大小、柱的填充情況以及流動相的流速等有關。所以分離最終效果則是熱力學與動力學兩方面的綜合效益。

❽ 高效液相色譜常用什麼色譜法

高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。

正相色譜法與反相色譜法比較表

正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出

從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。

色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜

根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)

根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同

根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜

氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。

一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。

分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。

固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。

流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。

二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。

反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。

三、鍵合相色譜

考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物

反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。

反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。

四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。

根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。

SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。

五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離

❾ 高壓液相色譜的主要類型及其分離原理

根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型:
1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography)
流動相和固定相都是液體。流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。達到平衡時,服從於下式:
式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。
b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。現在應用很廣泛(70~80%)。
2 .液 — 固色譜法
流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下:
Xm + nSa ====== Xa + nSm
式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時:
K=[Xa][Sm]/[Xm][Sa]
式中:K為吸附平衡常數。[討論:K越大,保留值越大。]
3 .離子交換色譜法(Ion-exchange Chromatography)
IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下:
X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中)
當交換達平衡時:
KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]
分配系數為:
DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]
[討論:DX與保留值的關系]
凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。
4 .離子對色譜法(Ion Pair Chromatography)
離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。其原理可用下式表示:
X+水相 + Y-水相 === X+Y-有機相
式中:X+水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X+Y---形成的離子對化合物。
當達平衡時:
KXY = [X+Y-]有機相/[ X+]水相[Y-]水相
根據定義,分配系數為:
DX= [X+Y-]有機相/[ X+]水相= KXY [Y-]水相
[討論:DX與保留值的關系]
離子對色譜法(特別是反相)發解決了以往難以分離的混合物的分離問題,諸如酸、鹼和離子、非離子混合物,特別是一些生化試樣如核酸、核苷、生物鹼以及葯物等分離。
5 .離子色譜法(Ion Chromatography)
用離子交換樹脂為固定相,電解質溶液為流動相。以電導檢測器為通用檢測器,為消除流動相中強電解質背景離子對電導檢測器的干擾,設置了抑制柱。試樣組分在分離柱和抑制柱上的反應原理與離子交換色譜法相同。
以陰離子交換樹脂(R-OH)作固定相,分離陰離子(如Br-)為例。當待測陰離子Br-隨流動相(NaOH)進入色譜柱時,發生如下交換反應(洗脫反應為交換反應的逆過程):
抑制柱上發生的反應:
R-H+ + Na+OH- === R-Na+ + H2O
R-H+ + Na+Br- === R-Na+ + H+Br-
可見,通過抑制柱將洗脫液轉變成了電導值很小的水,消除了本底電導的影響;試樣陰離子Br-則被轉化成了相應的酸H+Br-,可用電導法靈敏的檢測。
離子色譜法是溶液中陰離子分析的最佳方法。也可用於陽離子分析。
6 .空間排阻色譜法(Steric Exclusion Chromatography)
空間排阻色譜法以凝膠 (gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。
高效液相色譜儀主要有進樣系統、輸液系統、.分離系統、檢測系統和數據處理系統,下面將分別敘述其各自的組成與特點。
1.進樣系統
一般採用隔膜注射進樣器或高壓進樣間完成進樣操作,進樣量是恆定的。這對提高分析樣品的重復性是有益的。
2.輸液系統
該系統包括高壓泵、流動相貯存器和梯度儀三部分。高壓泵的一般壓強為l.47~4.4X107Pa,流速可調且穩定,當高壓流動相通過層析柱時,可降低樣品在柱中的擴散效應,可加快其在柱中的移動速度,這對提高解析度、回收樣品、保持樣品的生物活性等都是有利的。流動相貯存錯和梯度儀,可使流動相隨固定相和樣品的性質而改變,包括改變洗脫液的極性、離子強度、PH值,或改用競爭性抑制劑或變性劑等。這就可使各種物質(即使僅有一個基團的差別或是同分異構體)都能獲得有效分離。
3.分離系統
該系統包括色譜柱、連接管和恆溫器等。色譜柱一般長度為10~50cm(需要兩根連用時,可在二者之間加一連接管),內徑為2~5mm,由優質不銹鋼或厚壁玻璃管或鈦合金等材料製成,住內裝有直徑為5~10μm粒度的固定相(由基質和固定液構成).固定相中的基質是由機械強度高的樹脂或硅膠構成,它們都有惰性(如硅膠表面的硅酸基因基本已除去)、多孔性(孔徑可達1000?)和比表面積大的特點,加之其表面經過機械塗漬(與氣相色譜中固定相的制備一樣),或者用化學法偶聯各種基因(如磷酸基、季胺基、羥甲基、苯基、氨基或各種長度碳鏈的烷基等)或配體的有機化合物。因此,這類固定相對結構不同的物質有良好的選擇性。例如,在多孔性硅膠表面偶聯豌豆凝集素(PSA)後,就可以把成纖維細胞中的一種糖蛋白分離出來。
另外,固定相基質粒小,柱床極易達到均勻、緻密狀態,極易降低渦流擴散效應。基質粒度小,微孔淺,樣品在微孔區內傳質短。這些對縮小譜帶寬度、提高解析度是有益的。根據柱效理論分析,基質粒度小,塔板理論數N就越大。這也進一步證明基質粒度小,會提高解析度的道理。
再者,高效液相色譜的恆溫器可使溫度從室溫調到60C,通過改善傳質速度,縮短分析時間,就可增加層析柱的效率。
4.檢測系統
高效液相色譜常用的檢測器有紫外檢測器、示差折光檢測器和熒光檢測器三種。
(1)紫外檢測器
該檢測器適用於對紫外光(或可見光)有吸收性能樣品的檢測。其特點:使用面廣(如蛋白質、核酸、氨基酸、核苷酸、多肽、激素等均可使用);靈敏度高(檢測下限為10-10g/ml);線性范圍寬;對溫度和流速變化不敏感;可檢測梯度溶液洗脫的樣品。
(2)示差折光檢測器
凡具有與流動相折光率不同的樣品組分,均可使用示差折光檢測器檢測。目前,糖類化合物的檢測大多使用此檢測系統。這一系統通用性強、操作簡單,但靈敏度低(檢測下限為10-7g/ml),流動相的變化會引起折光率的變化,因此,它既不適用於痕量分析,也不適用於梯度洗脫樣品的檢測。
(3)熒光檢測器
凡具有熒光的物質,在一定條件下,其發射光的熒光強度與物質的濃度成正比。因此,這一檢測器只適用於具有熒光的有機化合物(如多環芳烴、氨基酸、胺類、維生素和某些蛋白質等)的測定,其靈敏度很高(檢測下限為10-12~10-14g/ml),痕量分析和梯度洗脫作品的檢測均可採用。
(5)數據處理系統
該系統可對測試數據進行採集、貯存、顯示、列印和處理等操作,使樣品的分離、制備或鑒定工作能正確開展。

❿ 高效液相色譜儀的應用分離方式及主要組成

應用:高效液相色譜法應用於化工、醫葯、食品、環境保護等多個行業的研發及生產工作。

分離方式:簡單地說,就是吸附,再分配。

主要組成:流動相,泵,進樣裝置,色譜柱,檢測器,然後廢液。另外連這電腦的工作站進行數據採集。


大概就是這么一個流程:

流動相:這個沒啥可說的。

泵:是這個儀器的心臟,帶動整個系統。把流動相抽出來,按照流速推動進儀器。

進樣裝置:注入樣品,然後樣品隨著流動相一起流入色譜柱。

色譜柱:重要的分離裝置。吸附和再分配都是在這里發生的。帶著樣品的流動相流入固定相,然後吸附在填料上面,然後再被洗脫下來。流入檢測器。

檢測器:採集信號,然後由工作站記錄下來,就成了色譜圖了。

閱讀全文

與高效液相色譜分析方法的分離模式相關的資料

熱點內容
地下水高錳酸鉀指數測量方法 瀏覽:331
纖維樁使用方法 瀏覽:684
貴州點光源安裝方法 瀏覽:806
化學鍍方法和技巧 瀏覽:492
寶寶怎麼治療最好的方法 瀏覽:457
csgo連入專屬伺服器失敗解決方法 瀏覽:937
溶液酸鹼性計算方法 瀏覽:203
戰馬貼膜的正確方法 瀏覽:171
復印機安裝與操作方法 瀏覽:18
概率中的個數計算方法 瀏覽:826
金帥洗衣機使用方法 瀏覽:651
怎麼選擇樁的施工方法 瀏覽:586
聯想筆記本限速在哪裡設置方法 瀏覽:483
怎樣快速止牙痛土方法 瀏覽:55
子宮肌層2mm治療方法 瀏覽:796
波紋排水管安裝方法 瀏覽:256
華為網路密碼在哪裡設置方法 瀏覽:1009
含羞草如何種植方法 瀏覽:357
小米note微信視頻在哪裡設置方法 瀏覽:851
在家製作紅棗糕的簡單方法 瀏覽:424