導航:首頁 > 計算方法 > 高一數學大題計算方法

高一數學大題計算方法

發布時間:2022-05-31 10:37:15

㈠ 大神,求高一數學計算題,大致思路就可以了

可以把前面那個先通分,然後上面部分提取出來一個a+b,再前面那個去除以後面那個,如果結果大於1,則前面那個大於後面那個

㈡ 高一數學題:請幫忙計算一下,要步驟的,謝謝

順時針旋轉的角度可以看成逆時針旋轉的負角度,以-45度代入公式即可。

㈢ 高一數學必修一解題方法

學習數學最重要的在打好基礎,進一步去理解。你要多看課本,把概念記住,弄懂例題。平時要注意錯題重做,不要一味的去做新題,做一個會一個。學會舉一反三。更重要的是要有一個好的心態,這次只是月考,沒什麼事一次考不好並不代表以後學不好啊。不要糾結,你可以去找老師請他幫你分析一下,找一下錯題原因。下課了還有自習的時候多往老師辦公室跑,去問問題。
相信自己,一定能學好。放假了 可以從網上找找教學視頻。學習重在總結!!因為萬變不離其宗!
高中高一數學必修1各章知識點總結

第一章 集合與函數概念

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於「屬於」的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AíB, BíC ,那麼 AíC

④ 如果AíB 同時 BíA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x | x?S且 x?A}

S

CsA

A

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.

定義域補充

能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.

(又注意:求出不等式組的解集即為函數的定義域。)

構成函數的三要素:定義域、對應關系和值域

再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)

(見課本21頁相關例2)

值域補充

(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

3. 函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.

C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2) 畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法(請參考必修4三角函數)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

發現解題中的錯誤。

4.快去了解區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

5.什麼叫做映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

常用的函數表示法及各自的優點:

1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須註明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.

注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值

補充一:分段函數 (參見課本P24-25)

在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.

補充二:復合函數

如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。

例如: y=2sinX y=2cos(X2+1)

7.函數單調性

(1).增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)

如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;

2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)_

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:

函數
單調性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

8.函數的奇偶性

(1)偶函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2).奇函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).

(3)具有奇偶性的函數的圖象的特徵

偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值(定義見課本p36頁)

1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).

當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。

注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪

正數的分數指數冪的意義,規定:


0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(1) · ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1
0<a<1

圖象特徵
函數性質

向x、y軸正負方向無限延伸
函數的定義域為R

圖象關於原點和y軸不對稱
非奇非偶函數

函數圖象都在x軸上方
函數的值域為R+

函數圖象都過定點(0,1)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

在第一象限內的圖象縱坐標都大於1
在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值後增長速度極快;
函數值開始減小極快,到了某一值後減小速度較慢;

注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;

二、對數函數

(一)對數

1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:1 注意底數的限制 ,且 ;

2 ;

3 注意對數的書寫格式.

兩個重要對數:

1 常用對數:以10為底的對數 ;

2 自然對數:以無理數 為底的對數的對數 .

對數式與指數式的互化

對數式 指數式

對數底數 ← → 冪底數

對數 ← → 指數

真數 ← → 冪

(二)對數的運算性質

如果 ,且 , , ,那麼:

1 · + ;

2 - ;

3 .

注意:換底公式

( ,且 ; ,且 ; ).

利用換底公式推導下面的結論(1) ;(2) .

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。

如: , 都不是對數函數,而只能稱其為對數型函數.

2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1
0<a<1

圖象特徵
函數性質

函數圖象都在y軸右側
函數的定義域為(0,+∞)

圖象關於原點和y軸不對稱
非奇非偶函數

向y軸正負方向無限延伸
函數的值域為R

函數圖象都過定點(1,0)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

第一象限的圖象縱坐標都大於0
第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0
第二象限的圖象縱坐標都小於0

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:

方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

求函數 的零點:

1 (代數法)求方程 的實數根;

2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

㈣ 高中數學大題解題方法有哪些

一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。

二、數列題

1.證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

2.最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

3.證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。

三、立體幾何題

1.證明線面位置關系,一般不需要去建系,更簡單;

2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

3.注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。

四、概率問題

1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

2.搞清是什麼概率模型,套用哪個公式;

3.記准均值、方差、標准差公式;

4.求概率時,正難則反(根據p1+p2+...+pn=1);

5.注意計數時利用列舉、樹圖等基本方法;

6.注意放回抽樣,不放回抽樣;

7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8.注意條件概率公式;

9.注意平均分組、不完全平均分組問題。

五、圓錐曲線問題

1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;

2.注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;

3.戰術上整體思路要保7分,爭9分,想12分。

六、導數、極值、最值、不等式恆成立(或逆用求參)問題

1.先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);

2.注意最後一問有應用前面結論的意識;

3.注意分論討論的思想;

4.不等式問題有構造函數的意識;

5.恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);

6.整體思路上保6分,爭10分,想14分。

㈤ 高一數學大題的答題技巧有哪些

對於數學大題,應明確題意,知道大概過程。注意應分類討論的要考慮它可能出現的所有情況,特別是有不等式的。一定要吧所有粗等式都列出。不能漏調任何一個。計算要細心。如過列對了但算了,哪太不劃算了。還有,不要一來就做。應大概想一下大,心中有底後再寫。但也要看時間。書寫應規范。應用特么定數學語言的一定用。

㈥ 高一數學競賽公式

一、集合與簡易邏輯:
一、理解集合中的有關概念 (1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關系用符號 , 表示。
(3)常用數集的符號表示:自然數集 ;正整數集 、 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。
二、集合中元素的個數的計算: (1)若集合 中有 n個元素,則集合 的所有不同的子集個數為_________,所有真子集的個數是__________,所有非空真子集的個數是 。
三、若 ; 則 是 的充分非必要條件 ;
若 ; 則 是 的必要非充分條件 ;
若 ; 則 是 的充要條件 ;
若 ; 則 是 的既非充分又非必要條件 ;
四、原命題與逆否命題,否命題與逆命題具有相同的 ;
五、反證法:當證明「若 ,則 」感到困難時,改證它的等價命題「若 則 」成立,
步驟:1、假設結論反面成立;2、從這個假設出發,推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結論正確。
矛盾的來源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個恆假命題。
適用與待證命題的結論涉及「不可能」、「不是」、「至少」、「至多」、「唯一」等字眼時。
正面詞語 等於 大於 小於 是 都是 至多有一個
否定
正面詞語 至少有一個 任意的 所有的 至多有n個 任意兩個
否定
二、函數
一、映射與函數:
(1)映射的概念:
(2)一一映射:
(3)函數的概念:
二、函數的三要素: , , 。
(1)函數解析式的求法: ①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法: 含參問題的定義域要分類討論; 對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法: ①配方法:轉化為二次函數,利用二次函數的特徵來求值;②逆求法(反求法):通過反解,用y來表示x,再由x的取值范圍,通過解不等式,得出y的取值范圍;④換元法:通過變數代換轉化為能求值域的函數,化歸思想;⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;⑥基本不等式法:利用平均值不等式公式來求值域;⑦單調性法:函數為單調函數,可根據函數的單調性求值域。⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
三、函數的性質: 函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較) 導數法(適用於多項式函數) 復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數; f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法 應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
五、反函數:
(1)定義:
(2)函數存在反函數的條件: ;
(3)互為反函數的定義域與值域的關系: ;
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元二次函數: 一般式: ;對稱軸方程是 ;頂點為 ;
兩點式: ;對稱軸方程是 ;與 軸的交點為 ;
頂點式: ;對稱軸方程是 ;頂點為 ;
①一元二次函數的單調性:
②二次函數求最值問題:首先要採用配方法,
Ⅰ、若頂點的橫坐標在給定的區間上,則 時:在頂點處取得最小值,最大值在距離對稱軸較遠的端點處取得; 時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;
Ⅱ、若頂點的橫坐標不在給定的區間上,則 時:最小值在距離對稱軸較近的端點處取得,最大值在距離對稱軸較遠的端點處取得; 時:最大值在距離對稱軸較近的端點處取得,最小值在距離對稱軸較遠的端點處取得;
有三個類型題型: (1)頂點固定,區間也固定。(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。 (3)頂點固定,區間變動,這時要討論區間中的參數.
指數運演算法則:
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
指數運演算法則:
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
八、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意: ①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。 ②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。 ③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。 ④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
基本應用:①放縮,變形;②求函數最值:注意:①一正二定三取等;②積定和小,和定積大。
常用的方法為:拆、湊、平方;
三、絕對值不等式: 注意:上述等號「=」成立的條件;
四、常用的基本不等式:
五、證明不等式常用方法:(1)比較法:作差比較:
作差比較的步驟: ⑴作差:對要比較大小的兩個數(或式)作差。 ⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。 ⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。 (2)綜合法:由因導果。 (3)分析法:執果索因。基本步驟:要證……只需證……,只需證…… (4)反證法:正難則反。(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有: ⑴添加或捨去一些項, ⑵將分子或分母放大(或縮小) ⑶利用基本不等式, ⑷利用常用結論:(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,則 ;⑵若 ,則 ;
Ⅱ、 :⑴若 ,則 ;⑵若 ,則 ;
(2)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(5)絕對值不等式:若 ,則 ; ;
注意:(1).幾何意義:
(2)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;
(3).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(4).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(6)分式不等式的解法:通解變形為整式不等式;
(7)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(8)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多分 、 、 討論。
五、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
在解含絕對值的數列最值問題時,注意轉化思想的應用。
六、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
+0= +(- )=0.
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |�6�1| |;
(2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.
(3)若 =( ),則 �6�1 =( ).
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:
5. 向量的數量積:
(1).向量的夾角:
(2).兩個向量的數量積:
(3).向量的數量積的性質:
(4) .向量的數量積的運算律:
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。
七、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

三角公式匯總
一、任意角的三角函數
在角 的終邊上任取一點 ,記: ,
正弦: 餘弦:
正切: 餘切:
正割: 餘割:
註:我們還可以用單位圓中的有向線段表示任意角的三角函數:如圖,與單位圓有關的有向線段 、 、 分別叫做角 的正弦線、餘弦線、正切線。
二、同角三角函數的基本關系式
倒數關系: , , 。
商數關系: , 。
平方關系: , , 。
三、誘導公式
⑴ 、 、 、 、 的三角函數值,等於 的同名函數值,前面加上一個把 看成銳角時原函數值的符號。(口訣:函數名不變,符號看象限)
⑵ 、 、 、 的三角函數值,等於 的異名函數值,前面加上一個把 看成銳角時原函數值的符號。(口訣:函數名改變,符號看象限)
四、和角公式和差角公式

五、二倍角公式



二倍角的餘弦公式 有以下常用變形:(規律:降冪擴角,升冪縮角)

, , 。
六、萬能公式(可以理解為二倍角公式的另一種形式)
, , 。
萬能公式告訴我們,單角的三角函數都可以用半形的正切來表示。
七、和差化積公式
…⑴
…⑵
…⑶
…⑷
了解和差化積公式的推導,有助於我們理解並掌握好公式:

兩式相加可得公式⑴,兩式相減可得公式⑵。

兩式相加可得公式⑶,兩式相減可得公式⑷。
八、積化和差公式

我們可以把積化和差公式看成是和差化積公式的逆應用。
九、輔助角公式
()
其中:角 的終邊所在的象限與點 所在的象限相同,
, , 。
十、正弦定理
( 為 外接圓半徑)
十一、餘弦定理

十二、三角形的面積公式

(兩邊一夾角)
( 為 外接圓半徑)
( 為 內切圓半徑)
…海侖公式(其中 )

㈦ 高一數學題(請告訴我怎麼做,方法是什麼)

y=2x^3-4x^2-3x+3
y『=6x^2-8x-3,(0,1)上y』小於0,y關於x遞減
令x=0,y=3,令x=1,y=-2
又y在(0,1)上連續,故(0,1)上必定至少有一值,使y=0,即方程在(0,1)上有解
二分法,y關於x遞減
我已經懶得算了。。
反正二分法就是取x為中值時算下y的值,若大於0就取0到x的一半x/2繼續算,算到y<0;若小於0就取x到1的一半(1-x)/2繼續算,算到y>0;

㈧ 如何快速掌握高一數學的解題思路與解題技巧

高一數學解題技巧口訣一、《集合與函數》 內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。 復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。 指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。 函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數; 正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。 兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸; 求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。 冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數, 奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。 二、《立體幾何》 點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。 垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。 方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。 立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。 異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。 三、《平面解析幾何》 有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。 笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。 兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。 三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。 四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。 解析幾何是幾何,得意忘形不活。圖形直觀數入微,數本是數形。 《三角函數》三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范;三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集; 說明:和差化積,積化和差公式已經不做背誦要求,這章公式用推理的方法記憶應該更為牢固 《不等式》解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。《數列》等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。《復數》虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。《排列、組合、二項式定理》加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。

㈨ 求問一道高一數學計算題

該題是一道一元二次方程式,解題方式如下
2x=1/x
2x^2=1 兩邊同時乘以x
x^2=1/2
x=+-√(1/2)

㈩ 高一數學解答題求計算過程

1.令2x^2-4x
7=mx^2
2mx
1,整理得方程(m-2)x^2
(2m
4)x-6=0,依題意,方程無解。即
m-2不等於0;(2m
4)^2
24(m-2)<0,即m的范圍(-2又根號33,2)U(2,2又根號33)
2.討論:當a>=2時,f(x)>=2*2
1=5,即g(a)=5
當a<2時,g(a)=a
4/a=1
記得給好評哈~

閱讀全文

與高一數學大題計算方法相關的資料

熱點內容
胡夫金字塔用作比較的方法怎麼寫 瀏覽:21
蘇州牛皮癬中葯治療方法 瀏覽:714
正確的供奉方法圖片 瀏覽:393
練微笑的方法視頻教程 瀏覽:154
茅台vip用酒查真偽鑒別方法 瀏覽:143
手臂刮汗毛用什麼方法 瀏覽:738
調理肌酐最好的方法如何降 瀏覽:936
狗風疙瘩最快治療方法 瀏覽:802
大蒜治療金魚腸炎土方法怎麼治療 瀏覽:769
江蘇高質量考核發展指數計算方法 瀏覽:917
蟲牙土方法怎麼治 瀏覽:294
水膠體敷料使用方法 瀏覽:829
粉絲的訓練方法 瀏覽:778
鋁蓋發霉怎麼處理方法 瀏覽:318
做生意都有哪些賺錢的方法 瀏覽:443
黃金三角手臂鍛煉方法 瀏覽:12
根號15在數軸上的表示方法圖片 瀏覽:913
語音提示器安裝方法 瀏覽:204
c32漏電保護空開連接方法 瀏覽:368
附件炎有哪些治療方法 瀏覽:335