㈠ 高中數學數列問題
數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an= Sn-Sn-1
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn=na1+[n(n-1)/2]d
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式: an= a1 q^(n-1),an= ak q^(n-k)
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn=a1(q^n-1)/(q-1)
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:如an=
30、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
誘導公式
sin(-a)= -sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)= -sin(a)
sin(pi-a)=sin(a)
cos(pi-a)= -cos(a)
sin(pi+a)= -sin(a)
cos(pi+a)= -cos(a)
tgA=tanA=sinA/cosA
兩角和與差的三角函數
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))
tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))
三角函數和差化積公式
sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)
sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)
cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)
cos(a)-cos(b)= -2sin((a+b)/2)sin((a-b)/2)
積化和差公式
sin(a)sin(b)= -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
二倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)
半形公式
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
萬能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重點三角函數
csc(a)=1/sin(a)
sec(a)=1/cos(a)
雙曲函數
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)
補充:
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數 sinθ=y/r 餘弦函數 cosθ=x/r 正切函數 tanθ=y/x 餘切函數 cotθ=x/y 正割函數 secθ=r/x 餘割函數 cscθ=r/y (斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨於被淘汰的函數: 正矢函數 versinθ =1-cosθ 余矢函數 coversθ =1-sinθ
同角三角函數間的基本關系式:
·平方關系:sin^2(α)+cos^2(α)=1 cos^2a=1+cos2a/2 tan^2(α)+1=sec^2(α) sin^2a=1-cos2a/2 cot^2(α)+1=csc^2(α)
·積的關系:sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα
·倒數關系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1
直角三角形ABC中,
角A的正弦值就等於角A的對邊比斜邊, 餘弦等於角A的鄰邊比斜邊 正切等於對邊比鄰邊, ·三角函數恆等變形公式
·兩角和與差的三角函數:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) tan(2α)=2tanα/[1-tan^2(α)]
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα
·半形公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
證明:
左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
證明:
左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
三角函數的角度換算
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z)
正餘弦定理
正弦定理是指在一個三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .
餘弦定理是指三角形中任何一邊的平方等於其它兩邊的平方和減去這兩邊與它們夾角的餘弦的積的2倍,即a^2=b^2+c^2-2bc cosA
部分高等內容
·高等代數中三角函數的指數表示(由泰勒級數易得):
sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展開有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此時三角函數定義域已推廣至整個復數集。
·三角函數作為微分方程的解:
對於微分方程組 y=-y'';y=y'''',有通解Q,可證明
Q=Asinx+Bcosx,因此也可以從此出發定義三角函數。
補充:由相應的指數表示我們可以定義一種類似的函數——雙曲函數,其擁有很多與三角函數的類似的性質,二者相映成趣。
特殊三角函數值
a 0` 30` 45` 60` 90`
sina 0 1/2 √2/2 √3/2 1
cosa 1 √3/2 √2/2 1/2 0
tana 0 √3/3 1 √3 None
cota None √3 1 √3/3 0
三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它們的各項都是正整數冪的冪函數, 其中c0,c1,c2,...cn...及a都是常數, 這種級數稱為冪級數.
泰勒展開式(冪級數展開法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
實用冪級數:
ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)
arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - ... (x≤1)
sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)
在解初等三角函數時,只需記住公式便可輕松作答,在競賽中,往往會用到與圖像結合的方法求三角函數值、三角函數不等式、面積等等。
傅立葉級數(三角級數)
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
三角函數的數值符號
正弦 一,二為正, 三,四為負
餘弦 一,四為正 二,三為負
正切 一,三為正 二,四為負
三角函數定義域和值域
sin(x),cos(x)的定義域為R,值域為〔-1,1〕
tg(x)的定義域為x不等於π/2+kπ,值域為R
ctg(x)的定義域為x不等於kπ,值域為R
㈡ 數學題 一道應用題一道數列問題 大家幫幫忙 希望有過程或做法思路..
(1)假設y=kx+b
則:350=650k+b
200=800k+b
解得:k=-1,b=1000
所以:y=-x+1000
利潤f(x)=y*x-500=(-x+1000)*x-500
x=500時有最大利潤f(500)=249500(元)
(2) an=Sn-S(n-1)=2n-1 an是公差為2的等差數列
所以 :a4=2*4-1=7
a1 +a3+ a5+…… a25 是公差為4的等差數列
a1=1,a25=49,所以:a1 +a3+ a5+…… a25=(1+49)*13/2=325
㈢ 數列求和的基本方法和技巧
一.公式法
如果一個數列是等差數列或等比數列,則求和時直接利用等差、等比數列的前n項和公式.注意等比數列公示q的取值要分q=1和q≠1.
二.倒序相加法
如果一個數列的首末兩端等「距離」的兩項的和相等,那麼求這個數列的前n項和即可用倒序相加法,如等差數列的前n項和公式即是用此法推導的.
三.錯位相減法
如果一個數列的各項和是由一個等差數列和一個等比數列的對應項之積構成的,那麼這個數列的前n項和即可用此法來求,如等比數列的前n項和公式就是用此法推導的.
四.裂項相消法
把數列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得其和.用裂項相消法求和時應注意抵消後並不一定只剩下第一項和最後一項,也可能前面剩兩項,後面也剩兩項,前後剩餘項是對稱出現的.
五.分組求和法
若一個數列的通項公式是由若干個等差數列或等比數列或可求和的數列組成,則求和時可用分組求和法,分別求和然後相加減.
六.並項求和法
一個數列的前n項和中,若可兩兩結合求解,則稱之為並項求和法.形如 類型,可採用兩項合並求解.
數列知識整合
1、在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題。
2、在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力。
進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。
3、培養學生善於分析題意,富於聯想,以適應新的背景,新的設問方式,提高學生用函數的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法。
㈣ 數列求和在實際生活中的應用有哪些
知識運用
為了讓學生能使用等差數列的求和公式來解決現實生活中的問題.我們採用模擬教學法和角色扮演法設置了一個面視簽合同的場景,你可以去網路文庫里邊查,那裡邊都有!希望能幫到你。
㈤ 高考數列題型及解題方法
2020高考數學題型之數列
鏈接: https://pan..com/s/1-LRqsp8Y6B6vWM_VZPQ8PA
若資源有問題歡迎追問~
㈥ 數列在生活中起了什麼作用比如怎麼用
首先, 我重點分析等差數列、等比數列在實際生活和經濟活動中的應用。
(一)按揭貨款中的數列問題
隨著中央推行積極的財政政策,購置房地產按揭貨款(公積金貸款)制度的推出,極大地刺激了人們的消費慾望,擴大了內需,有效地拉動了經濟增長。
眾所周知,按揭貨款(公積金貸款)中都實行按月等額還本付息。這個等額數是如何得來的,此外若干月後,還應歸還銀行多少本金,這些人們往往很難做到心中有數。下面就來尋求這一問題的解決辦法。
若貸款數額a0元,貸款月利率為p,還款方式每月等額還本付息a元.設第n月還款後的本金為an,那麼有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
將(*)變形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可見,{an-a/p}是一個以a1-a/p為首項,1+p為公比的等比數列。日常生活中一切有關按揭貨款的問題,均可根據此式計算。
(二)有關數列的其他經濟應用問題
數列知識除在個人投資理財方面有較為廣泛的應用外,在企業經營管理上也是不可或缺的。一定做過大量的應用題吧!雖然這些應用題是從實際生活中抽象出的略高於生活的問題,但他們是數學習題中最能反映數學知識與實際生活密切關系的一類問題。因此,解答應用問題有助於我們對數學在日常生活中廣泛應用的理解和認識。
(三)數列在藝術中的廣泛應用
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是[5^(1/2)-1]/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
數列其實不算太難,弄懂基本的等差和等比數列,再於其基礎上拓展練習就能學好。
㈦ 數學中數列解題思想是什麼
贊同一樓的看法,解數列就是不惜一切代價將所求的數列通過一系列變換轉化為特殊的數列,當然也不一定要是等差等比數列,比如1+1/2+1/6+1/12+1/20+………… 當然還有其他一些特殊的數列,平時多注意收集積累。不過我我可以肯定的是,就算這些所謂的特殊數列,最終大多也和等差等比有關系。
將數列 或加上某個數列、某個數;或減 或乘 或除,終歸是可以找到解決辦法的
例如一個最簡單的數列
an=3^n-2 ,當然從這個通項就很容易看出 an+2是一個等比數列
再例如 an=3an-1+4 也可以看出an+2=3(an-1+2)那麼很明顯an+2是一個等比數列
再例如an=3n+1是一個等差數列,a1/b1+a2/b2+……+an/bn=2n+1 我們也可以求出bn是一個等差數列
說了這么多我想說的是,解數列就是通過一系列的方法將它變為一些特殊的數列,一些比較復雜的數列可能要經過幾次的變化才能成為特殊的數列,但這並不是問題,只要平時多積累多思考,數列只是你人生樂趣中的其中一點罷了。數列並不難,,掌握了方法,學好了它 ,你可能會對數學充滿了樂趣。
㈧ 數列解題方法有哪些
這講不清楚的呀,不過方法有很多的,你只能看書呀,你把問題發上來吧
基本數列是等差數列和等比數列
一、等差數列
一個等差數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等差數列(即求出數列的通項公式):
1、首項a1和公差d
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數
等差數列的性質:
1、前N項和為N的二次函數(d不為0時)
2、a(m)-a(n)=(m-n)*d
3、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)也是等差數列
例題1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48
例題2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差數列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25
二、等比數列
一個等比數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等比數列(即求出數列的通項公式):
1、首項a1和公比r
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數
等比數列的性質:
1、a(m)/a(n)=r^(m-n)
2、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)是等比數列
3、等比數列的連續m項和也是等比數列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)構成的數列是等比數列。
三、數列的前N項和與逐項差
1、如果數列的通項公式是關於N的多項式,最高次數為P,則數列的前N項和是關於N的多項式,最高次數為P+1。
(這與積分很相似)
2、逐項差就是數列相鄰兩項的差組成的數列。
如果數列的通項公式是關於N的多項式,最高次數為P,則數列的逐項差的通項公式是關於N的多項式,最高次數為P-1。
(這與微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
從上例看出,四次數列經過四次逐項差後變成常數數列。
等比數列的逐項差還是等比數列
四、已知數列通項公式A(N),求數列的前N項和S(N)。
這個問題等價於求S(N)的通項公式,而S(N)=S(N-1)+A(N),這就成為遞推數列的問題。
解法是尋找一個數列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
從而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)當作函數求積分,對得出的函數形式設待定系數,利用B(N)-B(N-1)=-A(N)求出待定系數。
例題1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N積分得(N*LN2-1)*2^N/(LN2)^2
因此設B(N)=(PN+Q)*2^N
則 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因為上式是恆等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2
例題2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)為N的四次多項式,
設:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E
解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4
㈨ 學習數列問題的技巧和方法有什麼
在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題。