『壹』 簡便計算方法
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道題目中,利用第一種方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等於5100加上2200等於6300
『貳』 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
『叄』 簡便運算方法
提公因式 把十八提出來,(76+25-11)️️乘18
『肆』 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
『伍』 1234+2341+3412+4123如何運用簡便方法計算
這道題的特點是:個位、十位、百位、千位的數字,1、2、3、4個出現一次
所以,根據加法結合律,
原式=1111+2222+3333+4444
=1111×1+1111×2+1111×3+1111×4
=1111×(1+2+3+4)
=1111×10
=11110
『陸』 20道簡便運算帶答案
62×7.1+2.9,
=440.2+2.9,
=443.1;
4.2×0.25,
=(4+0.2)×0.25,
=4×0.25+0.2×0.25,
=1+0.05,
=1.05;
5.2×4.3+0.8×4.3,
=(5.2+0.8)×4.3,
=6×4.3,
=25.8.
8.5+1.5÷0.25×4,
=8.5+6×4,
=8.5+24,
=32.5.
0.25×0.8+2.5%
=0.2+2.5%,
=0.225;
32×125×2.5,
=4×8×125×2.5,
=8×125×(4×2.5),
=1000×10,
=10000;
94÷(6.84×8.5-31.46÷0.55),
=94÷(58.14-57.2),
=94÷0.94,
=100.
13÷0.4÷2.5,
=13÷(0.4×2.5),
=13÷1,
=13;
1.25×2.5×0.8,
=(1.25×0.8)×2.5,
=1×2.5,
=2.5;
1.5×101-1.5,
=1.5×(101-1),
=1.5×100,
=150;
4.8×101,
=4.8×100+4.8×1,
=480+4.8,
=484.8.
3.25×4.7-7.8,
=15.275-7.8,
=7.475;
0.57+0.43×0.24,
=0.57+0.1032,
=0.6732.
945÷5÷3,
=189÷3,
=63;
152×3÷2,
=456÷2,
=228;
43×12×6,
=516×6,
=3096.
200+25×33,
=200+825,
=1025;
(25+26)×48,
=51×48,
=2448.
576-(290+107),
=576-397,
=179;
649+124-556,
=773-556,
=217.
4.82-5.2÷0.8×0.6,
=4.82-6.5×0.6,
=4.82-3.9,
=0.92.
『柒』 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(7)3420134簡便方法擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
『捌』 數學簡便方法計算
一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的類型 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
『玖』 簡便計算大全
一、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、結合律
(一)加括弧法
1.當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括弧法
1.當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去括弧是添加括弧的逆運算)
2.當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就 要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
三、乘法分配律
1.分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
3.注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 綜上所述,要教好簡便計算,使學生達到計算的時候又快又對,不僅正確無誤,方法還很合理、樣式靈活的要求。首先要求教師熟知有關內容並綽綽有餘,其次對教材還要像導演使用劇本一樣,都有一個創造的過程,做探求教法的有心人。在練習設計上除了做到內容要精選,有層次,題形多樣,還要有訓練智力與非智力技能的價值。
『拾』 小學數學簡便計算公式
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。