導航:首頁 > 知識科普 > 多個數連加用簡便方法計算六年級

多個數連加用簡便方法計算六年級

發布時間:2022-03-31 05:36:38

A. 六年級上冊 簡便計算方法哪些

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很雜的式子變得很易計算出得數。

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變,如:(2+4)×5=2×5+4×56。

除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

簡便計算中最常用的方法是乘法分配律。

乘法分配律:ax(b+c)=axb+axc,其中a,b,c是任意實數。

相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用,也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘,如將上式中的+變為x,運用乘法結合律也可簡便計算。

B. 六年級數學混合運算和簡便運算

你好!夠了吧!
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)

43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53.[(7.1-5.6)×0.9-1.15] ÷2.5
54.5.4÷[2.6×(3.7-2.9)+0.62]
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71.[(7.1-5.6)×0.9-1.15] ÷2.5
72.5.4÷[2.6×(3.7-2.9)+0.62]
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
2、 2-6/13÷9/26-2/3
3、 2/9+1/2÷4/5+3/8
4、 10÷5/9+1/6×4
5、 1/2×2/5+9/10÷9/20
6、 5/9×3/10+2/7÷2/5
7、 1/2+1/4×4/5-1/8
8、 3/4×5/7×4/3-1/2
9、 23-8/9×1/27÷1/27
10、 8×5/6+2/5÷4
11、 1/2+3/4×5/12×4/5
12、 8/9×3/4-3/8÷3/4
13、 5/8÷5/4+3/23÷9/11
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6

102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11.[(7.1-5.6)×0.9-1.15] ÷2.5
12.5.4÷[2.6×(3.7-2.9)+0.62]
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
1. 甲乙二人一起做數學題,如果甲再做4道和乙做的一樣多,如果乙再做6道就是甲做的3倍,則甲做了多少道題?乙做了多少道題?
2. 遊客在10時15分從碼頭劃船逆流而上,要求在當天不遲於13點返回,以知水流速度為1.4千米/小時,船在靜水的速度是3千米/小時.如果遊客每劃30分鍾就休息15分鍾而且只能在某次休息後往回劃,那麼他應該怎樣安排才能使劃離碼頭的距離最遠?
3. 某次數學比賽,有兩種評分方法:第一種答對一題得5分,不答得2分,答錯不扣分;第二種先給40分,答對一題得3分,不答不得分,答錯扣1分,某學生用兩種方法評分均得81分,請問這次比賽共有多少道題?
4. 工程隊要修一條水渠:如果每天多修8米,可提前4天完工;如果每天少修8米,則延後4天完工。請問這條水渠的長度?
一批糧食,運走全部的2/3(三分之二)少1噸.這時剩下的與原存的比是3:5.這批糧食原來有多少噸?
把兩筐蘋果分給甲、乙、丙三個班。甲班分得總量的2/5,剩下的按5:7分給乙、丙班。已知第二筐蘋果重量是第一筐的9/10 ,且比第一筐少5千克。甲、乙、丙班分得的蘋果分別是_________ 、_________ 、_________ 千克。
3. 設a,b使得6位數 a2000b 能被26整除。所有這樣的6位數是________。
4. 把右面8×8的方格紙沿格線剪成4塊形狀、大小都相同的圖形,使得每一塊上都有羅、牛、山3個字。在圖上用實線畫出剪的結果。

5. 某容器中裝有鹽水。老師讓小強再倒入5%的鹽水800克,以配成20%的鹽水。但小強卻錯誤地倒入了800克水。老師發現後說,不要緊,你再將第三種鹽水400克倒入容器,就可得到20%的鹽水了。那麼第三種鹽水的濃度是_________ %。
6. 設6個口袋分別裝有18,19,21,23,25,34個小球。小王取走了其中的3袋,小李取走了另外的2袋。若小王得到的球的個數恰好是小李得到的球數的2倍,則小王得到的球的個數是_________ 。
7. 一水池裝有甲、乙兩個水管。乙管每小時排水量是甲管的75%。先用乙管排水5小時後,改用甲管排水,結果比只用乙管提前1小時把水池中的水排空;如用乙管排水120噸後再改用甲管排水,則比只用乙管可提前2小時把水池中的水全部排空。那麼水池原有水_________ 噸。
8. 右圖中,四邊形FMCG和FDHG都是梯形。D為BC的中點,BE= BA,MF= MA,△ABC的面積為1。那麼梯形FDHG的面積是_________ 。

9. A,B,C三輛汽車以相同的速度同時從甲市開往乙市。開車後1小時A車出了事故,B和C兩車照常前進。A車停了半小時後以原來速度的4/5 繼續前進。B,C兩車行至距離甲市200千米處B車出了事故,C車照常前進。B車停了半小時後也以原來速度的4/5 繼續前進。結果到達乙市的時間C車比B車早1小時,B車比A車早1小時,甲、乙兩市的距離為_________ 千米。
10.右圖中共有_________ 個不同的三角形。

11.設四個不同的正整數構成的四數組中,最小的數與其餘三 數的平均值之和為17,而最大的數與其餘三數的平均值之和為29。在滿足上述條件的四數組中,其最大數的最大值是_________ 。
12.一隊和二隊兩個施工隊的人數之比為3:4,每人工作效率之比為5:4。兩隊同時分別接受兩項工作量與條件完全相同的工程,結果二隊比一隊早完工9天。後來,由一隊工人的2/3 與二隊工人的1/3 組成新一隊,其餘的工人組成新二隊。兩支新隊又同時分別接受兩項工作量與條件完全相同的工程,結果新二隊比新一隊早完工6天。那麼前後兩次工程的工作量之比是_________ 。
接力競賽
1.甲、乙兩班各有一個圖書室,共有303本書。已知甲班圖書的5/13 和乙班圖書的 1/4合在一起是95本,那麼甲班圖書有_________ 。
2.設上題答案數的各位數字之和為a。 小寧家的鍾和學校的鍾走的都正常,但小寧家的鍾撥快了,而學校的鍾是准確的。小寧按家裡的鍾8點a分離家去學校,走到學校時學校的鍾是7點50分;中午,他按學校的鍾12點時離校回家,到家時家裡的鍾正好是12點34分。如果小寧上學和下學路上用的時間是相同的,那麼小寧家的鍾撥快了_________ 分鍾。
3.設上題答案數為b。 如圖所示,大正方形里有一個長為b/4 、寬為1的長方形。長方形的頂點都在正方形的邊上,而且長方形的對稱軸與正方形的對角線重合,那麼,正方形的面積是_____。

4.設上題答案數的整數部分為c。 把1/c 表示為兩個不同的分數單位之和,那麼共有_________ 種不同的表示方法(僅求和次序不同視為一種)。
5.設上題答案數為d。 當王力的年齡像李同現在這么大時,劉強的年齡比王力和李同他們現在的年齡之和小d歲。當劉強像王力現在這么大時,王力的年齡是_________ 歲。
6.設上題答案數為e。 將用2,3,5,e組成的所有的四位數(數字允許重復)從小到大排成一列,這列數的第56個是_________ 。
7.設上題答案數的個位數字為f。 有10個整數排成一個圓形,將每一個整數換成與它相鄰兩數的平均值,所得的結果如圖所示。那麼圖中數f所佔位置的原數是_________ 。

8.設上題答案數的2倍為g。 有一組正整數,其中任意兩數之差的g倍都不小於它們的乘積。那麼這組正整數最多有_________ 個。

1. 有 28位小朋友排成一行 .從左邊開始數第 10位是愛華,從右邊開始數他是第幾位?

2. 紐約時間是香港時間減 13小時 .你與一位在紐約的朋友約定,紐約時間 4月 1日晚上 8時與他通電話,那麼在香港你應幾月幾日幾時給他打電話?

3. 名工人 5小時加工零件 90件,要在 10小時完成 540個零件的加工,需要工人多少人?

4. 大於 100的整數中,被 13除後商與余數相同的數有多少個?

5. 四個房間,每個房間里不少於 2人,任何三個房間里的人數不少 8人,這四個房間至少有多少人?

6. 在 1998的約數(或因數)中有兩位數,其中最大的是哪個數?

7. 英文測驗,小明前三次平均分是 88分,要想平均分達到 90分,他第四次最少要得幾分?

8. 一個月最多有 5個星期日,在一年的 12個月中,有 5個星期日的月份最多有幾個月?

9. 將 0, 1, 2, 3, 4, 5, 6, 7, 8, 9這十個數字中,選出六個填在下面方框中,使算式成立,一個方框填一個數字,各個方框數字不相同 .

□ +□□ =□□□

問算式中的三位數最大是什麼數?

10. 有一個號碼是六位數,前四位是 2857,後兩位記不清,即

2857□□

但是我記得,它能被 11和 13整除,請你算出後兩位數 .

11. 某學校有學生 518人,如果男生增加 4%,女生減少 3人,總人數就增加 8人,那麼原來男生比女生多幾人?

12. 陳敏要購物三次,為了使每次都不產生 10元以下的找贖, 5元、 2元、 1元的硬幣最少總共要帶幾個?

(硬幣只有 5元、 2元、 1元三種 .)

13. 右圖是三個半圓構成的圖形,其中小圓直徑為 8,中圓直徑為 12,

14.幼兒園的老師把一些畫片分給 A, B, C三個班,每人都能分到 6張 .如果只分給 B班,每人能得 15張,如果只分給 C班,每人能得 14張,問只分給 A班,每人能得幾張?

15. 兩人做一種游戲:輪流報數,報出的數只能是 1, 2, 3, 4, 5, 6, 7, 8.把兩人報出的數連加起來,誰報數後,加起來的數是 123,誰就獲勝,讓你先報,就一定會贏,那麼你第一個數報幾?

16.一本小說的頁碼,在印刷時必須用1989個鉛字,在這一本書的頁碼中數字1出現多少次?

17.把23個數:3,33,333,…,33…3(23個3)相加,則所得的和的末四位數是多少?

18.將1、1、2、2、3、3、4、4這八個數字排成一個八位數,使得兩個1之間有一個數字,兩個2之間有二個數字,兩個3之間有三個數字,兩個4之間有四個數字,那麼這樣的八位數中最小的是?

19.從 1, 2, 3,…,2004, 2005這些自然數中,最多可以取幾個數,才能使其中每兩個數的差不等於4?

20.有一個電話號碼是六位數,其中左邊三個數字相同,右邊三個數字是三個連續的自然數,六個數字之和恰好等於末尾的兩位數,這個電話號碼是多少?

21.若a為自然數,證明10│(a2005-a1949).

22.給出12個彼此不同的兩位數,證明:由它們中一定可以選出兩個數,它們的差是兩個相同數字組成的兩位數.

23.求被3除餘2,被5除餘3,被7除餘5的最小三位數.

24.設2n+1是質數,證明:12,22,…,n2被2n+1除所得的余數各不相同.

25.試證不小於5的質數的平方與1的差必能被24整除.

26. 有甲乙兩種糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,現要得到濃度是82.5%的糖水100克,問每種應取多少克?

27. 一個容器里裝有10升純酒精,倒出1升後,用水加滿,再倒出1升,用水加滿,再倒出1升,用水加滿,這時容器內的酒精溶液的濃度是?

28. 有若干千克4%的鹽水,蒸發了一些水分後變成了10%的鹽水,在加300克4%的鹽水,混合後變成6.4%的鹽水,問最初的鹽水是多少千克?

29.已知鹽水若干克,第一次加入一定量的水後,鹽水濃度變為3%,第二次加入同樣多的水後,鹽水濃度變為2%。求第三次加入同樣多的水後鹽水的濃度。

30.有A、B、C三種鹽水,按A與B的數量之比為2:1混合,得到濃度為13%的鹽水;按A與B的數量之比為1:2混合,得到濃度為14%的鹽水;按A、B、C的數量之比為1:1:3混合,得到濃度為10.2%的鹽水,問鹽水C的濃度是多少?
[ 答案 ]

1. 從右邊開始數,他是第 19位 .

2. 4 月2 日上午9 時.

3.9名工人 .

4.有 5個 .

13× 7+7=98< 100,商數從 8開始 .但余數小於 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5個數 .

5.至少有 11人 .

人數最多的房間至少有 3人,其餘三個房間至少有 8人,總共至少有 11人 .

6.最大的兩位約數是 74.

1998= 2× 3× 3× 3× 37

7.第四次最少要得 96分 .

88+( 90- 88)× 4=96(分)

8.最多有 5個月有 5個星期日 .

1月 1日是星期日,全年就有 53個星期日 .每月至少有 4個星期日, 53-4× 12=5,多出 5個星期日,在 5個月中 .

9.105.

和的前兩位是 1和 0,兩位數的十位是 9.因此加數的個位最大是 7和 8.

10.後兩位數是 14.

285700÷( 11× 13) =1997餘 129

余數 129再加 14就能被 143整除 .

11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .

12.最少 5元、 2元、 1元的硬幣共 11個 .

購物 3次,必須備有 3個 5元、 3個 2元、 3個 1元 .為了應付 3次都是 4元,至少還要 2個硬幣,例如 2元和 1元各一個,因此,總數 11個是不能少的 .准備 5元 3個, 2元 5個, 1元 3個,或者 5元 3個, 2元 4個, 1元 4個就能三次支付 1元至 9元任何錢數 .

14.A班每人能得 35張 .

設三班總人數是 1,則 B班人數是 6/15, C班人數是 6/14,因此 A班人數是:

15.第一個數報 6.

對方至少要報數 1,至多報數 8,不論對方報什麼數,你總是可以做到兩人所報數之和為 9.

123÷ 9= 13…… 6.

你第一次報數 6.以後,對方報數後,你再報數,使一輪中兩人報的數和為 9,你就能在 13輪後達到 123.

16.4

17.甲26又2/3天,乙40天

18.21

19.14又1/3

20.10

21.甲、乙兩地相距540千米,原來火車的速度為每小時90千米。

22.750

23.384

24.600

25.一班48人,二班42人

26.15

27.82

28.312

29.最少5個,最多7個

30.784
5. 1.某工廠原用長4米、寬1米的鐵皮圍成沒有底和頂的正方體形狀的產品存放處(底和頂用其它材料),恰好夠存放一周產品。現在產品增加了27%,能否還用原來的鐵皮圍成存放處,裝下現在一周的產品?

2、一項工程,甲單獨做需要10天,乙單獨做需要15天,如果兩人合作,工作效率就要降低,甲只能完成原來的4/5,乙只能完成原來的9/10,現在要8天完成這項工程,兩人合作的天數盡可能少,那麼兩人合作多少天?

3、一輛汽車以每小時40千米的速度從甲城開往乙城,返回時用原速度走了全程的3/4還多5千米,再改用每小時30千米的速度,走完餘下的路程,因此返回甲城的時間比前往乙城的時間多用了10分鍾,甲乙兩城相距多遠?

4、某市居民自來水收費標准如下:每戶每月用水4噸以下,每噸1.8元。當超過4噸時,超過部分每噸3.00元。某月甲、乙兩戶共交水費26.40元,用水量之比是5:3,請你算一算,甲、乙兩戶各應交水費多少元?
伙計,實在不好意思,只找到這么點,應用題你也練練吧

C. 六年級簡便運算的技巧和方法是什麼

綜述,六年級簡便運算的技巧和方法有提取公因式、借來借去法、拆分法和乘法分配律結、利用基準數、利用公式法、裂項法等等。

一、提取公因式

這個方法實實際是運用子乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。

例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)

二、借來借去法

考試中有看到998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。還要注意還,有借有還,再借不難。

例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4

三、拆分法和乘法分配律結

這種方法要靈活掌握拆分法和乘法分配律,看到99、101、9.8等接近一個整數的時候,首先考慮拆分。

例如:34×9.9=34×(10-0.1)

四、利用基準數

在一系列數中找出一個折中的數字來代表這一系列的數字,當然要記得這一數字的選擇不能偏離這一系列數字太遠。

例如:2072+2052+2062+2042+2083=(2062×5)+10-10-20+21

五、利用公式法

(1)加法交換律:兩數相加交換加數的位置,和不變。

(2)加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

(3)乘法交換律:兩數相乘,交換因數的位置,積不變。

(4)乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

(5)乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(6)除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。

六、裂項法

分數裂項是指將分數版式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱這國裂項法。

如:1/[n(n+1)]=(1/n)-[1/(n+1)]

1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

D. 小學奧數簡便運算求連續多個數的和

第一項加最後一項的和乘以項數再除以2,簡單來說就是第一個數加上最後一個數的和乘以總個數,再除以2

E. 100以內數的連加計算方法

運用高斯演算法。以首項加末項乘以項數除以2用來計算「1+2+3+4+5+···+(n-1)+n」的結果。這樣的演算法被稱為高斯演算法。

計算方法(公式)

具體的方法是:首項加末項乘以項數除以2

項數的計算方法是末項減去首項除以項差(每項之間的差)加1.

如:1+2+3+4+5+······+n,則用字母表示為:n(1+n)/2

等差數列求和公式Sn=(a1+an)n/2Sn=n(2a1+(n-1)d)/2; d=公差Sn=An2+Bn; A=d/2,B=a1-(d/2)

(5)多個數連加用簡便方法計算六年級擴展閱讀:

演算法由來

高斯小時候非常淘氣,一次數學課上,老師為了讓他們安靜下來,給他們列了一道很難的算式,讓他們一個小時內算出1+2+3+4+5+6+……+100的得數。

全班只有高斯用了不到20分鍾給出了答案,因為他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50個101,所以50×101就是1加到一百的得數。後來人們把這種簡便演算法稱作高斯演算法。

約翰·卡爾·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德國著名數學家、物理學家、天文學家、大地測量學家,是近代數學奠基者之一,被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。

高斯和阿基米德、牛頓並列為世界三大數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個,屬數學家中之最。他對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。

F. 六年級簡便運算的技巧和方法

1五年級數學簡便方法計算

一般在計算中,題乾的要求是:能簡算的要簡算。如果式子中有分母相同的分數,結合起來可以湊整或者可以口算,那麼可以通過交換律和結合律將這樣的分數放在一起。但是要特別注意去括弧和加括弧時,只有在括弧前面是「-」號時變號。當同學們不肯定時,請勿簡算,按照運算順序(①只有加減,按照從左到右的順序計算②有小括弧的,先計算小括弧裡面的)進行計算即可。

2五年級數學簡便方法

加括弧法:當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)四年.級下數學簡便運算: a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c),a-b-C= a-( b +c);

當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變

G. 用簡便方法計算的綜合算式要150道有答案,六年級

乘法運算
乘法交換律,乘法結合律,乘法分配律的逆運算,乘法分配律
乘法交換律
兩個因數交換位置,積不變,這叫做乘法交換律。

字母公式:a×b=b×a
題例(簡算過程):12×8
=8×12
=96
乘法結合律
乘法結合律的概念為:先乘前兩個數,或先乘後兩個數,積不變。
字母公式:a×b×c=a×(b×c)

題例:30×25×4
=30×(25×4)
=30 ×100
=3000
乘法分配律
乘法分配律的概念為:兩個數的和,乘以一個數,可以拆開來算,積不變。
字母公式:(a+b)×c=a×c+b×c
例題:(2+3)×10
=3×10+2×10
=30+20
=50
乘法分配律的逆運算
乘法分配律的逆運算的概念為:一個數乘另一個數的積加它本身乘另一個數的積,可以把另外兩個數加起來再乘這個數
字母公式:ac+ab=a(c+b)
例題:3×4+3×5
=3×(4+5)
=3×9
= 27

H. 六年級上冊數學簡便計算方法有哪些

主要有六大方法:

1.「湊整巧算」——運用加法的交換律、結合律進行計算。

2.運用乘法的交換律、結合律進行簡算。

3.運用減法的性質進行簡算,同時注意逆進行。

4.運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。

5.運用乘法分配律進行簡算。

6.混合運算(根據混合運算的法則)。



乘法分配律

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。

也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。

乘法結合律

乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。

I. 連續的數相加有什麼簡便演算法嗎

(首+尾)*個數/2

第一個數加上最後一個數乘以這批數的總個數,然後除以2,


J. 六年級簡便運算怎麼

解題思路:四則運算規則需要按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方),在該原則前提下進行,以運算「892×12-12×592」為例:

892×12-12×592

=(892-592)×12

=300×12

=3600

(10)多個數連加用簡便方法計算六年級擴展閱讀:

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a、b、c是任意實數。

相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。

也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。

閱讀全文

與多個數連加用簡便方法計算六年級相關的資料

熱點內容
臉出油起痘痘有什麼方法 瀏覽:174
快速看圖識圖的方法 瀏覽:959
用不同的方法測量電流 瀏覽:268
室內大師常用的布局方法 瀏覽:625
真性近視的治療方法 瀏覽:40
尿液分析儀的使用方法 瀏覽:207
洋蔥頭怎麼種植方法視頻 瀏覽:697
黑雞膏的使用方法 瀏覽:92
十日氣質訓練方法 瀏覽:42
膽囊炎圖片及治療方法 瀏覽:351
憂鬱症的最佳治療方法 瀏覽:252
什麼反方法 瀏覽:249
如何分辨方向的方法 瀏覽:318
鍛煉肱三頭肌方法 瀏覽:521
冬天燒火的最佳方法 瀏覽:131
寶馬座套安裝方法 瀏覽:711
除了寫作業還有什麼學習方法 瀏覽:935
托班拼音復習方法和技巧 瀏覽:733
中葯雨林土的圖片及使用方法 瀏覽:552
算口算題最簡單的方法 瀏覽:99