導航:首頁 > 解決方法 > 金屬材料放射性檢測方法基本標准

金屬材料放射性檢測方法基本標准

發布時間:2022-10-08 21:34:18

① 放射性污染的監測方法

9.3.2.1 核事故污染的監測

核事故往往造成的污染范圍很大,而且給人民生命和國民經濟帶來巨大的損失,引起全世界的關注。針對核事故的地球物理監測工作大體上可分為兩大部分:一是在核事故發生後開始的大區域快速監測工作,及時了解逐日的污染擴散范圍和方向並採取相應的防範對策;二是對所有核設施的長年監測工作,以便一旦發生事故時,能夠了解原有的放射性背景以及追蹤事故後污染逐步消除的過程。

(1)切爾諾貝利核事故監測

早在核電站建成之前,蘇聯的烏克蘭科學院從20世紀60年代初期就通過在基輔的監測站對基輔周圍地區(包括切爾諾貝利地區)進行長期放射性環境監測。監測的參數包括γ輻射背景值(用輻射儀測量)、散落物的放射性活度測量(用面積40cm×40cm的平底盤採集,盤底鋪一張浸泡過甘油的濾紙,採集持續兩周,採集的樣品放在瓷坩堝內在電熱爐中加溫到500℃灰化,然後測定其β輻射強度)、土壤放射性污染檢測(在地表下5cm深處用正方形取樣器10cm×10cm取樣,樣品風干、磨碎、過篩後,測定其β輻射強度)。

事故發生前,γ輻射劑量率為10~12μR/h(背景值),1986年4月26日發生事故後,4月30日升高到5mR/h,比背景值高約500倍。在隨後幾天內γ輻射值變化強烈,與放射性物質的繼續泄漏和天氣變化有關。5月9日在反應堆再次爆炸後,γ輻射也再次出現高峰。1986年底,γ輻射降低到50μR/h,1992年(監測經過公布前)再次降低為16~18μR/h,接近事故前的背景值。

土壤中的β放射性活度(按土壤質量計)在事故前為550~740Bq/kg,事故後升高到29600Bq/kg。事故前放射性90Sr的質量活度為3.7~22.2Bq/kg,事故後升高了10倍。

為了了解污染的區域分布,瑞典地質調查所動用了兩架地球物理專用飛機,在150m的高度上進行了航空γ能譜測量,1986年5月1~6日的測量結果如圖9.12所示。在Gavle附近發現明顯的高值。後幾天的調查重點移向瑞典南部,以了解是否可以允許奶牛吃該地春天新生的牧草。5月5~8日在瑞典其他地區用100km線距的東西向測線覆蓋,發現污染區不斷向瑞典-挪威邊界的方向擴大。從5月9日~6月9日整個瑞典用50km線距的航空測量覆蓋,在一些異常區測線加密到2km。蘇聯在1986年4月28日以後,在國內面積為527400km的區域內進行過比例尺為1∶10萬、1∶20萬、1∶50萬的航空γ能譜測量,以監測放射性污染彌散的區域。

圖9.12瑞典航空γ射線照射量率等值線圖 (照射量率單位為μR/h)

(2)追蹤核動力衛星

由於衛星在進入大氣層後解體成多個碎片,因此監測工作要在降落軌道周圍廣闊地區內進行,主要依靠航空γ能譜測量,發現異常後再進行地面檢查。

蘇聯的用核反應堆作動力的宇宙-954衛星1977年底~1978年初在加拿大西北部隕落。1978年初加拿大國防部和美國能源部合作,追蹤衛星隕落的碎片在加拿大的散落位置。首先根據計算機預測的衛星隕落軌道,劃出一條長800km、寬50km隕落區域,由大奴湖東端至哈德遜灣附近的貝克爾湖,並將其分為14段。用4架C-130Heracles(大力神)飛機,以1.853km的線距、500m的離地高度作了航空γ能譜測量。加拿大地質調查所的能譜系統首先在大奴湖東端冰上的一號地段探測到放射源,到1月31日對全區作了普查,發現所有放射性碎片落在一個10km寬的帶內,在該帶內又以500m線距和250m離地高度作了詳查。鑒於大力神飛機的飛行高度不可能再進一步降低,還採用了一套直升機探測系統,在9號地段的冰上發現許多弱的放射源,它們都是在大力神的飛行高度上所不能發現的,後來對這些小片的分析表明它們是反應堆芯的一部分。此後,直升機系統又在沿大奴湖南岸一帶發現了更多的放射性碎片(圖9.13),這些碎片隨北風飄向預訂軌道的南側。到3月底又在大奴湖的冰上作了一次系統的直升機γ能譜測量,數據分析進一步證明反應堆芯在進入大氣層後已全部解體。同年夏天,加拿大原子能監控管理局做了進一步的監測和清理工作,以保證清除所有的有害物質,共回收約3500枚碎片,最遠的在衛星軌道以南480km。

9.3.2.2礦山探采和選冶污染的監測

除了鈾礦床外,許多有色金屬、貴金屬、稀有金屬、稀土元素和磷礦床等也都伴生有大量放射性元素,對這些礦床的勘探、開采、選礦和冶煉都會導致放射性污染。為了清除這些污染,了解清除的效果,都需要進行監測。

(1)尾礦場地的污染與監測

在地質勘探階段,礦床雖未交給工業部門開采,但是在勘探過程中使用了水平巷道、豎井和淺井等工程,使礦區受到天然放射性元素的污染。在礦床開采過程中,礦石和廢石的堆放與運輸造成更大面積的污染,選冶過程中產生的尾礦和爐渣也是不可忽視的污染源。

圖9.13大奴湖地區由宇宙-954衛星放射性碎片引起的γ射線總計數的分布

1979~1980年美國能源部在鹽湖谷作了航空放射性測量,以便劃定尾礦場地范圍,並指導地面調查。測量系統安裝在直升機上,探測器由20個NaI晶體組成,每個體積645.7cm3,航高46m,線距76m。根據測量數據繪出了照射量率等值線圖,如圖9.14(a)所示和高於背景值的226Ra含量分布范圍圖,如圖9.14(b)所示。背景照射量率變化於430~645fA/kg(1μR/h=71.667fA/kg)之間。尾礦堆的照射量率最高超過1×105fA/kg。在尾礦堆以北有兩個照射量率偏高的突出部分,西面的一個據認為是由尾礦受風吹動造成的,東面的一個沿鐵路分布,可能由測量時正在運輸的放射性物質或由沿鐵路運輸散落的礦石或尾礦引起。沿鐵路的其他輻射異常據推測也是由散落物引起的。

利用此次航空放射性測量數據,鹽湖城衛生局和猶他州衛生廳劃定出14個此前未知的放射性異常區,地面檢查發現9個地點屬於鈾選礦廠的尾礦、1個是鈾礦石、3個是放射性爐渣,還有1個是儲存的選礦設備。在20世紀80年代初查出的這些污染地段都得到了清理。

(2)採煤和燃煤的污染及監測

許多重要的採煤區在採煤過程中形成大面積的放射性污染。例如,德國的魯爾礦區發現,由煤礦抽向地面的水中226Ra含量所導致的活度濃度達13kBq/m3,流入地下坑道中的水達63kBq/m3。魯爾區所有煤礦每年抽出的水含226Ra導致的總活度共37GBq。在地面上放射性污染的分布在很大程度上與水的化學成分有關,共有兩類含鐳的水,A類含硫酸鹽甚少或不含硫酸鹽,但含Ba2+離子;B類水含大量硫酸鹽,但不含Ba2+離子。在B類水中鐳不沉澱,而A類水中的鐳,當其與硫酸鹽混合後,鐳與鋇同時沉澱,形成放射性沉積物。很多煤礦已採煤百年以上,在礦山廢水流經之處形成很厚的沉積層,質量活度達150kBq/kg,並導致土壤和植物的污染,土壤質量活度由0.2~31kBq/kg,在水道兩側的新鮮植物中含226Ra,其質量活度達1kBq/kg。

目前世界上許多發展中國家都以煤作為主要能源,因此粉煤灰成為一種量大面積的放射性污染源。據聯合國原子輻射效應科學委員會(UNSCEAR)的統計,一個每天燒煤10t的熱電廠,向大氣釋放的238U放射性活度達1850kBq,一個1000MW的熱電廠每年排放粉煤灰5×105t,其中1.4×105t排入大氣。調查表明,在熱電廠周圍由於粉煤灰放射性引起的癌症死亡率比在核電站周圍高30倍。

圖9.14鹽湖谷航空放射性測量

(3)石油開采及運輸中的放射性污染和監測

石油開發過程中的放射性污染主要來自放射性測井。在測井中使用的放射性物質主要有中子源、同位素等,如鎇鈹(241Am-Be)中子源,137Cs,226Ra,131Ba,131I,113Sn,113In伽馬源等。測井過程中的放射性污染主要是因操作不當造成的,如:由於操作不慎,配置的活化液濺入外環境;在開瓶分裝、稀釋及攪拌過程中,有131I氣溶膠逸出,造成空氣污染;在向注水井注入131I活化液時,由於操作不當,造成井場周圍的表面污染;測井過程中玷污井管和井下工具等。

在石油化工生產中,承壓設備(如鍋爐爐管、液化氣球罐、液化氣槽車、承壓容器、管線等)的探傷、液位控制、液位測量、密度測定、物料劑量、化學成分分析及醫療中的透視、拍片、疾病治療等,廣泛地採用了放射技術。在料位、液面、密度、物料劑量、化學成分分析方面的放射性同位素源的劑量、活度一般是幾個毫居里(mCi),很少超過1000mCi。不過,在正常工作情況下,不論是從事工業探傷的人員還是同位素儀表操作人員,身體健康均不會受到放射性損傷。

油田上放射性污染面積大的地方,甚至可以在1∶50萬的航空γ能譜測量中反映出來,污染物以鐳及其衰變產物為主,鈾、釷含量不超過土壤的背景值。該企業用路線汽車能譜測量在斯塔夫羅波爾邊區測過的40個油氣田,其地表全被放射性廢料污染,發現300多個污染地段,γ射線照射量率為60~3000μR/h,其中大部分在100~1000μR/h范圍內。

(4)磷肥的放射性污染及監測

在天然環境中磷和鈾之間有著穩定的共生關系,磷肥的原料———磷礦石含有偏高的鈾,磷肥的副產品中則含有較多的鈾衰變產物,這些都會給磷肥廠周圍的環境造成放射性污染。

在西班牙西南部奧迭爾河和廷托河匯合入海處附近有一個大型磷酸廠,用於製造磷酸鹽肥料,其原料為磷灰岩,含有大量鈾系放射性核素。在西班牙生產磷酸的方法是用硫酸來處理原岩,在此過程中形成硫酸鈣沉澱(CaSO4·2H2O),稱為磷石膏,這種副產物或者直接排入奧迭爾河,或者堆在廠房周圍。因此,需要估算該廠每年排入周圍環境的核素數量。此外,還測定了西班牙西南部幾種商品肥料的放射性元素含量,以估計其對農田的放射生態影響。

所有的調查工作均基於測定固體和液體樣的U同位素、226Ra和210Po及40K的含量。知道每年產出的磷石膏量及其中U,226Ra,210Po的質量活度平均值,得出工廠附近每年排出的U同位素總活度約0.6TBq,210Po總活度為1.8TBq,226Ra總活度為1.8TBq,各種放射性核素總量的80%存留在磷石膏堆中,其他直接排入奧迭爾河,存放的磷石膏也逐漸被水溶解流入河中。到達廷托河的水238U活度濃度為40Bq/L,226Ra為0.9Bq/L,210Po為9Bq/L。為研究河流的污染,還取了水系沉積物樣,樣品濕重數千克,烘乾、磨碎、混合後在高純鍺探測器上測量,探測器覆蓋10cm厚的鉛屏,內有2mm的銅襯,以便測得較低的質量活度。

磷肥廠的環境放射性污染在我國亦有發現。核工業總公司在上海市郊進行航空γ能譜測量時,曾發現10×10-6的鈾異常,是背景值的45倍,經查是由化肥廠的磷礦粉引起的。

9.3.2.3建築材料的放射性污染及監測

除了房屋地基的岩石、土壤會逸出氡外,建築材料中也可能含有某些放射性元素,因此也可能成為放射性污染源。當建築材料中鐳的質量活度高於37Bq/kg時,會成為室內空氣中氡的重要來源。有些地方用工業廢料作為製造建築材料的原料,可能將工業廢料中的放射性污染物帶入室內。例如利用粉煤灰或煤渣製造建築材料曾被認為是廢物利用的好辦法,但是當煤的放射性元素含量偏高時,會導致嚴重的後果。我國核工業總公司曾經對石煤渣所建房屋的室內吸收劑量率做過調查,發現石煤渣磚房屋的γ輻射吸收劑量率比對照組的房屋高出3~9倍。我國用白雲鄂博尾礦、礦渣做原料製造水泥的工廠,用其生產的水泥建造的房屋時室內氡的濃度比對照組高出4~6倍。而美國對常用建築材料放射性的調查結果表明,木材輻射出的氡最少,混凝土最多。

我國居民住宅多用磚作建築材料,其中放射性40K質量活度最高為148Bq/kg,Ra為37~185Bq/kg,釷為37~185Bq/kg。對於天然建築材料,建材行業標准(JC518-93)將其分三類,見表9.4。

表9.4我國天然建築材料核輻射分級標准

俄羅斯勘探地球物理研究所提出用以下參數對建築材料的輻射室內居民輻射劑量進行監測。

9.3.2.4 核廢料處理場地的選址和勘察

各國根據自己的條件來選擇適於儲存核廢料的地質體,但迄今研究得最多的是兩種:鹽體和深成結晶岩體。鹽體被認為是儲存核廢料得最好地質介質,其優點是未經破壞的鹽層乾燥,鹽體中產生的裂隙易於癒合,鹽比其他岩石更易吸收核廢料釋放的熱,鹽屏蔽射線的能力強,鹽的抗壓強度大,而且一般位於地震活動少的地區。而另外一些國家,因為各自的地質條件,主要研究利用深成結晶岩儲存核廢料。如加拿大和瑞典等國家,大部分領土屬於前寒武紀地質,它們研究的對象包括片麻岩、花崗岩、輝長岩等。這些岩體能否儲存核廢料主要取決於其中地下水的活動情況。由於結晶岩中地下水的唯一通道是裂隙,所以圈定裂隙帶並研究其含水性是重要的任務。在具體選擇儲存場地時考慮以下幾個條件:地勢平坦、因而水力梯度小,主要裂隙帶不要穿過場地,小裂隙帶應盡可能少,要避開可能有礦的地點。

其他研究的地質體還有粘土、玄武岩、凝灰岩、頁岩、砂岩、石膏,碳酸鹽也是可以考慮的目標。一般來說,碳酸鹽岩是不適合的,但由不透水岩石包圍的碳酸鹽岩透鏡體是值得研究的。除了陸地上的地質體外,對海底岩石的研究也已經開始。

(1)鹽體選址勘察中的地球物理工作

A.鹽體普查

為了儲存核廢料,首先要了解鹽層的深度、厚度和構造,圈出適合儲存的鹽體,一般傾向於把核廢料儲存在鹽丘里。

重力測量。重力法對鹽丘能進行有效的勘察。鹽的密度穩定,為2.1×103kg/m3,往往低於圍岩(2.2×103~2.4×103kg/m3),在鹽丘上可測到n×10~n×100g.u.的重力低。當鹽丘上部有厚層石膏時,由於石膏密度大,結果形成弱重力低背景上的重力高。當鹽丘為緻密火成岩環繞(火成岩在鹽丘形成過程中侵入)時,則在重力低的邊緣出現環狀重力高。鹽丘表面起伏可用高精度重力和地震測量綜合研究。當鹽丘地區的重力場非常復雜時(重力場為鹽上、鹽下層位、鹽層和基底的綜合反映),採用最小化法進行解釋:首先根據地質-地球物理資料提出模型,然後自動選擇與觀測重力異常最吻合的模型曲線,使兩者偏差的平方和等於最小值。

電法測量。鹽比圍岩電阻率高,是電性基準層,以往鹽層構造用直流電測深研究,近年來則愈來愈多地採用大地電流法和磁大地電流法。採用大地電流法確定鹽體埋藏深度時,利用大地電流平均場強與鹽層深度之間的統計關系,因此要掌握少量鑽探和地震資料。平均場強的高值區對應於鹽丘和鹽垣,這樣圈出的局部構造很多已被地震或鑽探所證實。

地震測量。在構造比較簡單的沉積岩區地震反射和折射法探測鹽層起伏是很有效的。例如丹麥為儲存核廢料選擇的莫爾斯鹽丘,其位置和形態就是根據反射面的分布確定的。在某些情況下地面地震法只能確定鹽丘頂部平緩部分的位置。而側壁的形態和位置難以確定,這可以採用井中地震。

總之,在選址時,為了研究鹽層構造,一般先利用重力和電法,兩者結合起來能更詳細地確定鹽層構造在平面上的大小和形態。根據重力和電法結果布置地震測網,通過地震法可准確確定鹽體深度,而利用井中地震則可准確確定鹽體側壁的位置和形態。

B.研究鹽體的內部結構

為了確定鹽體是否適應於儲存核廢料,必須研究鹽體內部結構,即其所含雜質(夾層)數量、含水性和裂隙發育程度。

確定雜質(夾層)的數量。鹽的相對純度是影響其能否儲存核廢料的一個重要因素,雜質的出現會使鹽層的抗壓強度減小,屏蔽射線的能力降低。鹽體所含雜質包括泥質組分、石膏等,泥質組分有的形成單獨的夾層,有的與鹽混在一起,形成泥鹽。美國得克薩斯州的帕洛杜羅盆地用天然γ測井和密度γ-γ測井評價了中上二疊系鹽層的純度。γ射線強度與泥質含量有關,因為泥質組分中的釷量較高。γ-γ測井求得的密度則與石膏的百分含量之間存在著線性相關關系。計算了每個鑽孔每個鹽層的γ強度平均值。不到30ft的夾層,其γ強度與鹽層一起平均,當夾層厚於30ft時,就把鹽層作為兩個單獨的層處理,據此編制了不同旋迴的γ射線強度的等值線圖,它實質上就是泥質含量分布圖,從中可以選擇泥質含量最低的地區作為儲存核廢料的地點。

在美國鹽谷地區還曾利用垂直地震剖面法,根據波速的不同劃分鹽中的夾層。而在丹麥的莫爾斯鹽丘則用井中重力研究了鹽內的夾層。

研究含水性。鹽體含水對建立核廢料是一個潛在的危險,它使部分鹽溶解成為鹵水,減小鹽的機械強度並腐蝕廢料容器。測量鹽體的含水量可以採用中子測井,以255Cf為中子源。試驗表明,在釋放的γ射線譜線上氫本身的峰很弱,不能用作評價含水量的尺度,但可利用快中子與Na和Cl原子核的相互作用,以下列參數衡量含水量:Na中子非彈性散射峰與Cl中子俘獲峰的比值。非彈性散射是指Na的原子核吸收一個中子並放出一個中子和γ射線,γ射線峰的位置在138keV;中子俘獲是指Cl的原子核俘獲一個中子並放出γ射線,其峰的位置在789keV。上述比值與水的含量呈正比。美國曾利用瞬變電磁法來確定鹵水的位置,在實際探測時發現,鹵水的位置與瞬變電磁法一維反演的低阻層位置相當吻合。

了解裂隙發育程度。為了保證核廢料庫的安全,必須了解鹽層的裂隙發育程度。主要方法為井中電法(特別是無線電波法)和聲波測井。鹽的電阻率高,電磁波傳播的損耗小,無線電波法的探測距離大,夾層或裂隙的電阻率或介電常數與鹽不同,這些都是應用無線電波法的有利條件。無線電波法包括透視和反射法,透視法測孔間信號的衰減,而反射法的發射和接收天線位於同一孔內,測電磁脈沖的走時和反射層的特徵。均勻的鹽不會產生明顯反射,裂隙增多則反射亦增多。無裂隙的鹽電阻率高、衰減小,多裂隙的鹽則電阻率低、衰減大。因此,衰減小、反射少的鹽體更適於儲存核廢料。

用聲波測井確定裂隙帶的位置時可以利用不同的參數,如反射波幅度、聲波速度和區間時間。

(2)深成結晶岩體選址和勘察中的地球物理工作

核廢料擬儲存於花崗岩深成結晶岩體500~1000m深度上類似於礦山的處理洞穴中。在深成結晶岩體的選址和勘察過程中,地球物理工作分為三個階段,即場地篩選、場地評價和洞穴開挖過程中的勘察。

A.場地篩選

首先開展區域普查來篩選幾個地區,作為候選的處理場地,每個地區的面積可達上千平方千米。在篩選過程中,了解深成岩體的形態和深度、周圍地質環境、主要不連續面的位置和走向,蓋層的特徵、岩石的完整性等都是很重要的。由於場地篩選是區域性調查,涉及面積很大,所以要選用快速普查性的地球物理方法,尤其是航空地球物理方法。航空磁測曾被用來確定深成岩體的邊界以及岩體中的岩石與構造界面,一般與航空磁測同時開展的航空γ能譜測量也可用於劃分花崗岩體的邊界,花崗岩體鈾的含量可達8×10-6,而圍岩往往低於2×10-6。航空電磁法用來填繪裂隙帶在近地表的投影以及覆蓋層的特徵。湖區的裂隙帶則可採用船載聲吶設備圈定。岩石的完整性可以通過測量岩石的整體電阻率來評價,採用的方法有大地電磁法(MT)、音頻大地電磁法(AMT)、瞬變電磁法(TEM)和直流電阻率法等。

地面重力法曾被用來確定深成岩體的形態和深度及其地質環境。圖9.15顯示一條南北向跨過岩基的39km長的重力剖面,圖上包括實測和模型重力曲線以及根據當地常見岩石單元作出的解釋剖面。與岩基有關的100g.u.的重力低非常明顯,疊加在重力低上的局部重力高很可能是由高密度的包裹體引起。

B.場地評價

場地評價是在經過篩選的較小區域內進行更詳細的調查,每個區域的面積可達100km2,總的目標是圈定主要裂隙帶,確定其幾何形態,進行岩性填圖並了解覆蓋層的特徵。

應用高解析度地震反射法了解裂隙帶的深部情況以及發現深埋的裂隙帶。可以探測到寬於地震波主波長1/8的目標,例如在P波速度約5500m/s的花崗岩中,若採用150Hz左右的工作頻率,就可以探測到5m寬的裂隙帶。但是要求探測離地表1000m以內的反射體意味著有用的反射包含在地震記錄的第1s內,然而對高解析度地震常用的炮檢距來說,在這一時間段內也有地滾波到達,為了減小地滾波的影響,需要採用頻率濾波、f-k濾波、減小炸葯量以保留信號的高頻成分,並且選擇適當的檢波器距使地滾波在疊加時盡量減小。

目前還提出了三種應用地球物理方法估算裂隙的水壓滲透性的途徑:一是利用裂隙空間的電導率;二是利用裂隙內聲波能量的損耗;三是利用地震波通過時鑽孔對裂隙壓縮的響應。

對於准備開挖的場地來說,層析方法的作用更大,因為在這樣的地點鑽孔的數目要控制在最低限度,以防在岩體中形成新的地下水通道。

C.開挖階段的勘察工作

開挖儲存核廢料洞穴的工作開始以後,需要了解洞穴周圍岩體的水文地質條件和地質力學條件。由於本階段研究的目標減小,所以要採用高解析度,因而是高頻的地球物理方法。雷達、超聲波和聲輻射方法都曾得到有效的應用。

圖9.15跨過岩基的一條南北向重力剖面圖和二維重力模型(右側為北)

利用超聲波可以確定開挖破壞帶的厚度。利用聲輻射測量可以監測開挖的安全性,聲輻射參數的變化可以用來預測可能產生的岩爆並確定其位置。此外,聲輻射測量還用於追蹤向裂隙帶內灌漿的進程,這時在裂隙帶附近的一系列鑽孔內放置加速度計,在灌漿過程中記錄的聲輻射強度是同灌漿的進展相關的。

總之,在深成結晶岩地區核廢料處理場地選址和勘察工作中,地球物理方法既能快速而經濟地做到對大片區域的地質構造進行全面的了解,又能對候選場地進行詳細評價和勘察。表9.5將各個階段的地球物理工作加以總結。但在各個階段的工作中,除地球物理方法外,還應綜合應用其他方法,尤其是水文地質、地球化學、地質和岩石力學方法等。由於地球物理方法在解釋上的多解性,還應通過鑽探來驗證。

表9.5深成結晶岩區核廢料地質處理中的地球物理工作

② X射線無損探傷是什麼標准

好像沒有單獨的X射線探傷標准,只有射線探傷標准,包括γ射線的。目前常用的標準是JB/T4730標准,還有GB3323標准,這樣看你在哪個行業了,生產出口產品還有執行ASME標准、歐盟標準的。

樓上說的標准,是探傷機的製造標准,不是探傷標准。

③ 我國對哪些放射性物質進行檢測,標準是怎樣的

其中之一:放射性建築材料:瓷磚、大理石、花崗岩、水泥、含廢渣磚、砌塊、石膏板、吊頂材料、粘結材料、保溫砂漿、沙石、砼試塊、防水卷材和防水塗料等,就是說在建築房子的建築工程用的建築材料是經過環境檢測部門出示的合格證書才可以使用的,不然對人體有傷害
說幾個標准吧:電離輻射防護與輻射源安全基本標准GB18871 電磁輻射防護規定 GB8702-88

④ 金屬檢測標准都包括哪些

一、金屬材料力學性能試驗方法:
GB/T 228.1—2010金屬材料 拉伸試驗 第一部分:室溫試驗方法
GB/T 228.2—2015金屬材料 拉伸試驗 第2部分:高溫試驗方法
GB/T 229—2007金屬材料 夏比擺錘沖擊試驗方法
GB/T 230.1—2009金屬材料 洛氏硬度試驗 第1部分:試驗方法(A、B、C、D、E、F、G、H、K、N、T標尺)
GB/T 231.1—2009金屬材料 布氏硬度試驗 第1部分:試驗方法
GB/T 232—1999金屬材料 彎曲試驗方法
GB/T 233—2000金屬材料 頂鍛試驗方法
GB/T 235—2013金屬材料 薄板和薄帶 反復彎曲試驗方法
GB/T 238—2013金屬材料 線材 反復彎曲試驗方法
GB/T 239.1—2012金屬材料 線材 第1部分:單向扭轉試驗方法
GB/T 239.2—2012金屬材料 線材 第2部分:雙向扭轉試驗方法
GB/T 241—2007金屬管 液壓試驗方法
GB/T 242—2007金屬管 擴口試驗方法
GB/T 244—2008金屬管 彎曲試驗方法
GB/T 245—2008金屬管 卷邊試驗方法
GB/T 246—2007金屬管 壓扁試驗方法
GB/T 1172—1999黑色金屬硬度及強度換算值
GB/T 2038—1991金屬材料延性斷裂韌度JIC試驗方法
GB/T 2039—2012金屬材料 單軸拉伸蠕變試驗方法
GB/T 2107—1980金屬高溫旋轉彎曲疲勞試驗方法
GB/T 2358—1994金屬材料裂紋尖端張開位移試驗方法
GB/T 2975—1998鋼及鋼產品力學性能試驗取樣位置及試樣制備
GB/T 3075—2008金屬材料 疲勞試驗 軸向力控制方法
GB/T 3250—2007鋁及鋁合金鉚釘線與鉚釘剪切試驗方法及鉚釘線鉚接試驗方法
GB/T 3251—2006鋁及鋁合金管材壓縮試驗方法
GB/T 3252—1982鋁及鋁合金鉚釘線與鉚釘剪切試驗方法
GB/T 3771—1983銅合金硬度和強度換算值
GB/T 4156—2007金屬材料 薄板和薄帶埃里克森杯突試驗
GB/T 4158—1984金屬艾氏沖擊試驗方法
GB/T 4160—2004鋼的應變時效敏感性試驗方法(夏比沖擊法)
GB/T 4161—2007金屬材料 平面應變斷裂韌度KIC試驗方法
GB/T 4337—2008金屬材料 疲勞試驗 旋轉彎曲方法
GB/T 4338—2006金屬材料高溫拉伸試驗方法
GB/T 4340.1—2009金屬材料 維氏硬度試驗 第1部分:試驗方法
GB/T 4340.2—2012金屬材料 維氏硬度試驗 第2部分:硬度計的檢驗與校準
GB/T 4340.3—2012金屬材料 維氏硬度試驗 第3部分:標准硬度塊的標定
GB/T 4341.1—2014金屬材料 肖氏硬度試驗 第1部分:試驗方法
GB/T 5027—2007金屬材料 薄板和薄帶塑性應變比(r值)的測定
GB/T 5028—2008金屬材料薄板和薄帶拉伸應變硬化指數(n值)的測定
GB/T 5482—2007金屬材料動態撕裂試驗方法
GB/T 6398—2000金屬材料疲勞裂紋擴展速率試驗方法
GB/T 6400—2007金屬材料 線材和鉚釘剪切試驗方法
GB/T 7314—2005金屬材料室溫壓縮試驗方法
GB/T 7732—2008金屬材料 表面裂紋拉伸試樣斷裂韌度試驗方法
GB/T 7733—1987金屬旋轉彎曲腐蝕疲勞試驗方法
GB/T 10120—2013金屬材料 拉伸應力鬆弛試驗方法
GB/T 10128—2007金屬材料 室溫扭轉試驗方法
GB/T 10622—1989金屬材料滾動接觸疲勞試驗方法
YB-T 5345-2006 金屬材料滾動接觸疲勞試驗方法
GB/T 10623—2008金屬材料 力學性能試驗術語
GB/T 12347—2008鋼絲繩彎曲疲勞試驗方法
GB/T 12443—2007金屬材料 扭應力疲勞試驗方法
GB/T 12444—2006金屬材料 磨損試驗方法 試環-試塊滑動磨損試驗
GB/T 12444.1—1990金屬 磨損試驗方法MM型磨損試驗
GB/T 12778—2008金屬夏比沖擊斷口測定方法
GB/T 13239—2006金屬材料 低溫拉伸試驗方法
GB/T 13329—2006金屬材料 低溫拉伸試驗方法
GB/T 14452—1993金屬彎曲力學性能試驗方法
GB/T 15248—2008金屬材料軸向等幅低循環疲勞試驗方法
GB/T 15824—2008熱作模具鋼熱疲勞試驗方法
GB/T 16865—2013 變形鋁、鎂及其合金加工製品拉伸試驗用試樣及方法
GB/T 17104—1997金屬管 管環拉伸試驗方法
GB/T 17394.1—2014金屬材料 里氏硬度試驗 第1部分 試驗方法
GB/T 17394.2—2012金屬材料 里氏硬度試驗 第2部分:硬度計的檢驗與校準
GB/T 17394.3—2012金屬材料 里氏硬度試驗 第3部分:標准硬度塊的標定
GB/T 17394.4—2014金屬材料 里氏硬度試驗 第4部分 硬度值換算表
GB/T 17600.1—1998鋼的伸長率換算 第1部分:碳素鋼和低合金鋼
GB/T 17600.2—1998鋼的伸長率換算 第2部分 奧氏體鋼
GB/T 26077—2010金屬材料 疲勞試驗 軸向應變控制方法
GB/T 22315—2008金屬材料 彈性模量和泊松比試驗方法
二、金屬材料化學成分分析:
GB/T 222—2006鋼的成品化學成分允許偏差
GB/T 223.X系列 鋼鐵及合金 X含量的測定
GB/T 4336—2002碳素鋼和中低合金鋼火花源原子發射光譜分析方法(常規法)
GB/T 4698.X系列 海綿鈦、鈦及鈦合金化學分析方法 X量的測定
GB/T 5121.X系列 銅及銅合金化學分析方法 第X部分:X含量的測定
GB/T 5678—1985鑄造合金光譜分析 取樣方法
GBT 6987.X系列 鋁及鋁合金化學分析方法 ……
GB/T 7999—2007鋁及鋁合金光電直讀發射光譜分析方法
GB/T 11170—2008不銹鋼 多元素含量的測定 火花放電原子發射光譜法(常規法)
GB/T 11261—2006鋼鐵 氧含量的測定 脈沖加熱惰氣熔融-紅外線測定方法
GB/T 13748.X系列 鎂及鎂合金化學分析方法 第X部分 X含量測定 ……
三、金屬材料物理冶金試驗方法
GB/T 224—2008鋼的脫碳層深度測定法
GB/T 225—2006鋼淬透性的末端淬火試驗方法(Jominy 試驗)
GB/T 226—2015鋼的低倍組織及缺陷酸蝕檢驗法
GB/T 227—1991工具鋼淬透性 試驗方法
GB/T 1954—2008鉻鎳奧氏體不銹鋼焊縫鐵素體含量測量方法
GB/T 1979—2001結構鋼低倍組織缺陷評級圖
GB/T 1814—1979鋼材斷口檢驗法
GB/T 2971—1982碳素鋼和低合金鋼斷口檢驗方法
GB/T 3246.1—2012變形鋁及鋁合金製品組織檢驗方法 第1部分 顯微組織檢驗方法
GB/T 3246.2—2012變形鋁及鋁合金製品組織檢驗方法 第2部分 低倍組織檢驗方法
GB/T 3488—1983硬質合金 顯微組織的金相測定
GB/T 3489—1983硬質合金孔隙度和非化合碳的金相測定
GB/T 4236—1984鋼的硫印檢驗方法
GB/T 4296—2004變形鎂合金顯微組織檢驗方法
GB/T 4297—2004變形鎂合金低倍組織檢驗方法
GB/T 4334—2008金屬和合金的腐蝕 不銹鋼晶間腐蝕試驗方法
GBT 4335—2013低碳鋼冷軋薄板鐵素體晶粒度測定法
GB/T 4334.6—2015不銹鋼5%硫酸腐蝕試驗方法
GB/T 4462—1984高速工具鋼大塊碳化物評級圖
GB/T 5058—1985鋼的等溫轉變曲線圖的測定方法(磁性法)
GB/T 5168—2008α-β鈦合金高低倍組織檢驗方法
GB/T 5617—2005鋼的感應淬火或火焰淬火後有效硬化層深度的測定
GB/T 8359—1987高速鋼中碳化物相的定量分析 X射線衍射儀法
GB/T 8362—1987鋼中殘余奧氏體定量測定 X射線衍射儀法
GB/T 9450—2005鋼件滲碳淬火硬化層深度的測定和校核
GB/T 9451—2005鋼件薄表面總硬化層深度或有效硬化層深度的測定
GB/T 10561—2005鋼中非金屬夾雜物含量的測定標准評級圖顯微檢驗法
GB/T 10851—1989鑄造鋁合金針孔
GB/T 10852—1989鑄造鋁銅合金晶粒度
GB/T 11354—2005鋼鐵零件滲氮層深度測定和金相組織檢驗
GB/T 13298—2015金屬顯微組織檢驗方法
GB/T 13299—1991鋼的顯微組織檢驗方法
GB/T 13302—1991鋼中石墨碳顯微評定方法
GB/T 13305—2008不銹鋼中α-相面積含量金相測定法
GB/T 13320—2007鋼質模鍛件 金相組織評級圖及評定方法
GB/T 13825—2008金屬覆蓋層 黑色金屬材料熱鍍鋅單位面積稱量法
GB/T 13912—2002金屬覆蓋層 鋼鐵製件熱浸鍍層技術要求及試驗方法
GB/T 14979—1994鋼的共晶碳化物不均勻度評定法
GB/T 15711—1995鋼材塔形發紋酸浸檢驗方法
GB/T 30823—2014測定工業淬火油冷卻性能的鎳合金探頭試驗方法
GB/T 14999.1—2012高溫合金試驗方法 第1部分:縱向低倍組織及缺陷酸浸檢驗
GB/T 14999.2—2012高溫合金試驗方法 第2部分:橫向低倍組織及缺陷酸浸檢驗
GB/T 14999.3—2012高溫合金試驗方法 第3部分:棒材縱向斷口檢驗
GB/T 14999.4—2012高溫合金試驗方法 第4部分:軋制高溫合金條帶晶粒組織和一次碳化物分布測定
YB/T 4002—2013連鑄鋼方坯低倍組織缺陷評級圖
四、金屬材料無損檢測方法
GB/T 1786—2008鍛制圓餅超聲波檢驗方法
GB/T 2970—2004厚鋼板超聲波檢驗方法
GB/T 3310—1999銅合金棒材超聲波探傷方法
GB/T 4162—2008鍛軋鋼棒超聲檢測方法
GB/T 5097—2005無損檢測 滲透檢測和磁粉檢測 觀察條件
GB/T 5126—2001鋁及鋁合金冷拉薄壁管材渦流探傷方法
GB/T 5193—2007鈦及鈦合金加工產品超聲波探傷方法
GB/T 5248—2008銅及銅合金無縫管渦流探傷方法
GB/T 5616—2014無損檢測 應用導則
GB/T 5777—2008無縫鋼管超聲波探傷檢驗方法
GB/T 6402—2008鋼鍛件超聲檢測方法
GB/T 6519—2013變形鋁、鎂合金產品超聲波檢驗方法
GB/T 7233.1—2009超聲波檢驗 第1部分:一般用途鑄鋼件
GB/T 7233.2—2010鑄鋼件 超聲檢測 第2部分:高承壓鑄鋼件
GB/T 7734—2004復合鋼板超聲波檢驗
GB/T 7735—2004鋼管渦流探傷檢驗方法
GB/T 7736—2008鋼的低倍缺陷超聲波檢驗法
GB/T 8361—2001冷拉圓鋼表面超聲波探傷方法
GB/T 8651—2002金屬板材超聲波探傷方法
GB/T 8652—1988變形高強度鋼超聲波檢驗方法
GB/T 9443—2007鑄鋼件滲透檢測
GB/T 9445—2015無損檢測 人員資格鑒定與認證
GB/T 10121—2008鋼材塔形發紋磁粉檢驗方法
GB/T 11259—2015無損檢測 超聲檢測用鋼參考試塊的製作和控制方法
GB/T 11260—2008圓鋼渦流探傷方法
GB/T 11343—2008無損檢測 接觸式超聲斜射檢測方法
GB/T 11345—2013焊縫無損檢測 超聲檢測 技術、檢測等級和評定
GB/T 11346—1989鋁合金鑄件X射線照相檢驗針孔(圓形)分級
GB/T 12604.1—2005無損檢測 術語 超聲檢測
GB/T 12604.2—2005無損檢測 術語 射線照相檢測
GB/T 12604.3—2005無損檢測 術語 滲透檢測
GB/T 12604.5—2008無損檢測 術語 磁粉檢測
GB/T 12604.6—2008無損檢測 術語 渦流檢測
GB/T 12604.7—2014無損檢測 術語 泄漏檢測
GB/T 12604.8—1995無損檢測 術語 中子檢測
GB/T 12604.9—2008無損檢測 術語 紅外檢測
GB/T 12604.10—2011無損檢測 術語 磁記憶檢測
GB/T 12604.11—2015無損檢測 術語 X射線數字成像檢測
GB/T 12605—2007無損檢測 金屬管道熔化焊環向對接接頭射線照相檢測
GB/T 12966—2008鋁合金電導率渦流測試方法
GB/T 12969.1—2007鈦及鈦合金管材超聲波探傷方法
GB/T 12969.2—2007鈦及鈦合金管材渦流探傷方法
GB/T 14480.1—2015無損檢測儀器渦流檢測設備第1部分:儀器性能和檢驗
GB/T 14480.2—2015無損檢測儀器渦流檢測設備第2部分:探頭性能和檢驗
GB/T 14480.3—2008無損檢測渦流檢測設備第3部分系統性能和檢驗
GB/T 15822.1—2005無損檢測 磁粉檢測 第1部分:總則
GB/T 15822.2—2005無損檢測 磁粉檢測 第2部分 檢測介質
GB/T 15822.3—2005無損檢測 磁粉檢測 第3部分 設備
GB/T 18694—2002無損檢測 超聲檢驗 探頭及其聲場的表徵
GB/T 18851.1—2005無損檢測 滲透檢測第1部分 總則
GB/T 18851.2—2008無損檢測 滲透檢測 第2部分:滲透材料的檢驗
GB/T 18851.3—2008無損檢測 滲透檢測 第3部分:參考試塊
GB/T 18851.4—2005無損檢測 滲透檢測 第4部分 設備
GB/T 18851.5—2005無損檢測 滲透檢測 第5部分 驗證方法
GB/T 19799.1—2005無損檢測 超聲檢測 1號校準試塊
GB/T 19799.2—2005無損檢測 超聲檢測 2號校準試塊
GB/T 23911—2009無損檢測 滲透檢測用試塊
五、金屬材料腐蝕試驗方法
GB/T 1838—2008電鍍錫鋼板鍍錫量試驗方法
GB/T 1839—2008鋼產品鍍鋅層質量試驗方法
GB/T 10123—2001金屬和合金的腐蝕 基本術語和定義
GB/T 13303—1991鋼的抗氧化性能測定方法
GBT 15970.X系列 金屬和合金的腐蝕 應力腐蝕試驗
可以在中服雲方案庫搜索更多金屬檢測報告、規范!

⑤ 鑄造廠購買的廢鋼放射性如何檢驗

如果是企業生產中的材料放射性快速檢測,α/β表面污染測量儀 應該就可以了。

⑥ 金屬材料檢測主要檢測項目有哪些

金屬材料主要檢測項目如下:
1、機械性能:主要包括(拉伸試驗、高低溫拉伸試驗、 壓縮試驗、剪切試驗、扭轉試驗、彎曲試驗、沖擊試驗、洛氏硬度試驗 、布氏硬度試驗、維氏硬度試驗、壓扁試驗 ;

2、化學成分分析:主要分析金屬材里的各種化學成分含量(碳, 硅, 錳, 磷, 硫, 鎳, 鉻, 鉬, 銅, 釩, 鈦, 鎢, 鉛, 鈮, 汞, 錫, 鎘, 銻, 鋁, 鎂, 鐵, 鋅, 氮, 氫, 氧 );
3、金相測試:主要包括(非金屬夾雜物、低倍組織、晶粒度、斷口檢驗、鍍層厚度、硬化層深度、脫碳層、灰口鑄鐵金相、球墨鑄鐵金相、金相切片分析;
4、鍍層測試:常用方法為,鍍層測厚-庫侖法、鍍層測厚-金相法、鍍層測厚-渦流法、鍍層測厚-射線熒光法、鍍層成分分析和表面污點分析;
5、腐蝕測試:包括中性鹽霧試驗 、酸性鹽霧試驗、銅離子加速鹽霧、二氧化硫腐蝕試驗、硫化氫腐蝕試驗、混和氣體腐蝕實驗、不銹鋼10%草酸浸蝕試驗、不銹鋼硫酸-硫酸鐵腐蝕試驗、不銹鋼65%硝酸腐蝕試驗、不銹鋼硝酸-氫氟酸腐蝕試驗、不銹鋼硫酸-硫酸銅腐蝕試驗、不銹鋼5%硫酸腐蝕試驗;
6、無損探傷:包括超聲波檢測、射線檢測、磁粉檢測、滲透檢測;
7、尺寸測試:包括尺寸測量、對稱性、垂直度、平整度、圓跳動、同軸度、平行度、圓度、粗糙度;
8、焊接工藝評定:包括拉伸測試、彎曲測試 (面彎背彎側彎)、超聲波檢測、射線檢測、磁粉檢測、滲透檢測、表面目測、宏觀組織檢測、焊縫硬度測試、沖擊測試。
9、失效分析包括:失效分析的程序和步驟、對失效事件進行調查、確定肇事件或者首先失效件、仔細收集失效件殘骸並妥善保管、收集失效件背景資料、確定失效分析方案並制定實施細節、檢查、測試與分析。

⑦ 建材原材料放射性物質檢測指哪些項目

一般情況下,建築物的放射性大部分來自建築材料中的天然放射性核素,這些放射性物質對公眾造成附加照射,一般表現為全身外照射及其衰變子體的內照射。對建築材料放射性物質含量的限值是基於輻射防護基本安全標准而確定的,並以常見的放射性核素226Ra、232Th和40K的比活度表徵。國際放射防護委員會(ICRP)對公眾規定的五年內平均年有效劑量限值為1mSv,如果建造住房和工作用房的建築材料中226Ra、232Th和40K的比活度分別為120、100和1000Bq·kg-1(這一放射性水平接近現行國際規定的極限),並假定公眾在室內的居留因子為0.8,則建材放射性對公眾個體造成的年有效照射劑量約為1.1mSv,已經略為超過ICRP確定的上述有效劑量限值。
為保障公眾及其後代的健康與安全,促進建築材料的合理利用和建材工業的合理發展,各國相繼根據本國的放射衛生防護法規和標准制定出建築材料放射性物質的限制標准及相應的檢測方法,並授權或指定有關部門負責貫徹實施。我國現行關於建築材料放射性主要有以下三部標准,分別是:1994年國家建築材料工業局頒布的JC518-1993《天然石材產品放射防護分類控制標准》;2000年國家質量技術監督局修訂發布的GB6566-2000《建築材料放射衛生防護標准》;2000年國家質量技術監督局修訂發布的GB6763-2000《建築材料產品及建材用工業廢渣放射性物質控制要求》。上述標准中所規定的測量條件和限制要求均不相同,而且對建築物室內的g空氣比釋動能率沒有作出限值要求和指定檢測方法。因此,迫切需要建立一種與現行標准有機聯系、適合現場快速檢測、並具操作性的測量方法,以滿足市場需求,這對於保護上海城市環境和公眾健康,促進國際大都市的可持續發展具有重要意義。

⑧ 如何檢測鋼材放射性物質

鋼材的放射性通過一般放射性檢測儀不能檢測,因為鋼材放射性一般屬於環境量級,而環境本底放射性影響比較顯著,不能給出結果,即使儀器給出結果,也不準確,也不被承認。一般用高純鍺γ能譜儀進行核素分析,但這個設備費用比較高,維護、使用不方便。可以拿樣品到有γ能譜儀的單位分析,不過也不便宜。做出結果單位是:貝克/千克。

如果只是自己知道是不是有顯著放射性,可以用一般NaI(TI)晶體類似表面放射性沾污儀(類似石材檢測的也可)的檢測。將儀器貼近金屬表面,如果計數顯著大於本底就認為有放射性,但數據沒有說服力。

⑨ 放射性測量方法

放射性測量方法按放射源不同可分為兩大類:一類是天然放射性方法,主要有γ測量法、α測量法等;另一類是人工放射性方法,主要有X射線熒光法、中子法等。表7.1給出了幾種放射性測量方法的簡單對比。

7.1.2.1 γ測量

γ測量法是利用輻射儀或能譜儀測量地表岩石或覆蓋層中放射性核素產生的γ射線,根據射線能量的不同判別不同的放射性元素,而根據活度的不同確定元素的含量。γ測量可分為航空γ測量、汽車γ測量、地面(步行)γ測量和γ測井,其物理基礎都是相同的。

根據所記錄的γ射線能量范圍的不同,γ測量可分為γ總量測量和γ能譜測量。

(1)γ總量測量

γ總量測量簡稱γ測量,它探測的是超過某一能量閾值的鈾、釷、鉀等的γ射線的總活度。γ總量測量常用的儀器是γ閃爍輻射儀,它的主要部分是閃爍計數器。閃爍體被入射的γ射線照射時會產生光子,光子經光電倍增管轉換後,成為電信號輸出,由此可記錄γ射線的活度。γ輻射儀測到的γ射線是測點附近岩石、土壤的γ輻射、宇宙射線的貢獻以及儀器本身的輻射及其他因素的貢獻三項之和,其中後兩項為γ輻射儀自然底數(或稱本底)。要定期測定儀器的自然底數,以便求出與岩石、土壤有關的γ輻射。岩石中正常含量的放射性核素所產生的γ射線活度稱為正常底數或背景值,各種岩石有不同的正常底數,可以按統計方法求取,作為正常場值。

表7.1 幾種放射性法的簡單對比

續表

(2)γ能譜測量

γ能譜測量記錄的是特徵譜段的γ射線,可區分出鈾、釷、鉀等天然放射性元素和銫-137、銫-134、鈷-60等人工放射性同位素的γ輻射。其基本原理是不同放射性核素輻射出的γ射線能量是不同的,鈾系、釷系、鉀-40和人工放射性同位素的γ射線能譜存在著一定的差異,利用這種差異選擇幾個合適的譜段作能譜測量,能推算出介質中的鈾、釷、鉀和其他放射性同位素的含量。

為了推算出岩石中鈾、釷、鉀的含量,通常選擇三個能譜段,即第一道:1.3~1.6MeV;第二道:1.6~2.0MeV;第三道:2.0~2.9MeV。每一測量道的譜段范圍稱為道寬。由於第一道對應40K的γ射線能譜,第二道、第三道則分別主要反映鈾系中的214Bi和釷系中的208Tl的貢獻,故常把第一、二、三道分別稱為鉀道、鈾道和釷道。但是,鉀道既記錄了40K的貢獻,又包含有鈾、釷的貢獻。同樣,鈾道中也包含釷的貢獻。當進行環境測量時往往增設137Cs,134Cs,60Co等道。

γ能譜測量可以得到γ射線的總計數,鈾、釷、鉀含量和它們的比值(U/Th,U/K,Th/K)等數據,是一種多參數、高效率的放射性測量方法。

7.1.2.2 射氣測量

射氣測量是用射氣儀測量土壤中放射性氣體濃度的一種瞬時測氡的放射性方法。目的是發現浮土覆蓋下的鈾、釷礦體,圈定構造帶或破碎帶,劃分岩層的接觸界限。

射氣測量的對象是222Rn,220Rn,219Rn。氡放出的α射線穿透能力雖然很弱(一張紙即可擋住),但它的運移能力卻很強。氡所到之處能有α輻射,用α輻射儀可方便測定。222Rn,220Rn的半衰期分別為3.8d和56s,前者衰變較後者慢得多,以此可加以區分。

工作時,先在測點位置打取氣孔,深約0.5~1m,再將取氣器埋入孔中,用氣筒把土壤中的氡吸入到儀器里,進行測量。測量完畢,應將儀器中的氣體排掉,以免氡氣污染儀器。

7.1.2.3 Po-210測量

Po-210法,也寫作210Po法或釙法,它是一種累積法測氡技術。210Po法是在野外採取土樣或岩樣。用電化學處理的方法把樣品中的放射性核素210Po置換到銅、銀、鎳等金屬片上,再用α輻射儀測量置換在金屬片上的210Po放出來的α射線,確定210Po的異常,用來發現深部鈾礦,尋找構造破碎帶,或解決環境與工程地質問題。

直接測氡,易受種種因素的影響,結果變化較大。測量210Pb能較好地反映當地222Rn的平均情況。210Po是一弱輻射體,不易測量,但其後210Bi(半衰期5d)的子體210Po卻有輻射較強的α輻射,半衰期長(138.4d)。因此,測210Po即可了解210Pb的情況,並較好地反映222Rn的分布規律。210Po是222Rn的子體,沿有釷的貢獻。這是和γ測量、射氣測量、α徑跡測量的不同之處。只測量210Po的α射線,而測不到Po的其他同位素放出的α射線,是因為它們的半衰期不同的緣故。

7.1.2.4 活性炭測量

活性炭法也是一種累積法測氡技術,靈敏度高,效率亦高,而技術簡單且成本低,能區分222Rn和220Rn,適用於覆蓋較厚,氣候乾旱,貯氣條件差的荒漠地區。探測深部鈾礦或解決其他有關地質問題。

活性炭測量的原理是在靜態條件下,乾燥的活性炭對氡有極強的吸附能力,並在一定情況下保持正比關系。因此,把裝有活性炭的取樣器埋在土壤里,活性炭中豐富的孔隙便能強烈地吸附土壤中的氡。一定時間後取出活性炭,測定其放射性,便可以了解該測點氡的情況,以此發現異常。

埋置活性炭之前,先在室內把活性炭裝在取樣器里,並稍加密封,以免吸附大氣中的氡。活性炭顆粒直徑約為0.4~3mm。每個取樣器里的活性炭重約數克至數十克,理置時間約為數小時至數十小時,一般為5d。時間可由實驗確定最佳值,埋置時間短,類似射氣測量;埋置時間長,類似徑跡測量,但徑跡測量除有氡的作用外,其他α輻射體也會有貢獻。活性炭測量只有氡的效果。也有把活性炭放在地面上來吸附氡的測量方法。

為了測量活性炭吸附的氡,可採取不同方法:①測量氡子體放出的γ射線;②測量氡及其子體放出的α射線。

7.1.2.5 熱釋光法

工作時,把熱釋光探測器埋在地下,使其接受α,β,γ射線的照射,熱釋光探測器將吸收它們的能量。一定時間後,取出探測器,送到實驗室,用專門的熱釋光測量儀器加熱熱釋光探測器,記錄下相應的溫度和光強。探測器所受輻射越多,其發光強度愈強。測定有關結果即可了解測點的輻射水平及放射性元素的分布情況,進而解決不同的地質問題。

自然界的礦物3/4以上有熱釋光現象。常溫條件下,礦物接受輻射獲得的能量,是能長期積累並保存下來的。只有當礦物受熱到一定程度,貯存的能量才能以光的形式釋放出來。根據礦物樣品的發光曲線,可以推算該礦物過去接受輻射的情況、溫度的情況等。

7.1.2.6 α測量法

α測量法是指通過測量氡及其衰變子體產生的α粒子的數量來尋找放射性目標體,以解決環境與工程問題的一類放射性測量方法。氡同位素及其衰變產物的α輻射是氡氣測量的主要物理基礎。

工程和環境調查中用得較多有α徑跡測量和α卡測量方法。

(1)α徑跡測量法

當α粒子射入絕緣體時,在其路徑上因輻射損傷會產生細微的痕跡,稱為潛跡(僅幾納米)。潛跡只有用電子顯微鏡才能看到。若把這種受過輻射損傷的材料浸泡在強酸或強鹼里,潛跡便會蝕刻擴大,當其直徑為微米量級時,用一般光學顯微鏡即可觀察到輻射粒子的徑跡。能產生徑跡的絕緣固體材料稱為固體徑跡探測器。α徑跡測量就是利用固體徑跡探測器探測徑跡的氡氣測量方法。

在工作地區取得大量α徑跡數據後,可利用統計方法確定該地區的徑跡底數,並據此劃分出正常場、偏高場、高場和異常場。徑跡密度大於底數加一倍均方差者為偏高場,加二倍均方差者為高場、加三倍均方差者為異常場。

(2)α卡法

α卡法是一種短期累積測氡的方法。α卡是用對氡的衰變子體(21884Po和21484Po等)具有強吸附力的材料(聚酯鍍鋁薄膜或自身帶靜電的過氯乙烯細纖維)製成的卡片,埋於土壤中,使其聚集氡子體的沉澱物,一定時間後取出卡片,立即用α輻射儀測量卡片上的α輻射,藉此測定氡的濃度。由於測量的是卡片上收集的放射性核素輻射出的α射線,所以把卡片稱作α卡,有關的方法就稱為α卡法。如果把卡片做成杯狀,則稱為α杯法,其工作原理與α卡法相同。

7.1.2.7 γ-γ法

γ-γ法是一種人工放射性法,它是利用γ射線與物質作用產生的一些效應來解決有關地質問題,常用來測定岩石、土壤的密度或岩性。

γ-γ法測定密度的原理是當γ射線通過介質時會發生康普頓效應、光電效應等過程。若γ射線的照射量率I0;γ射線穿過物質後,探測器接受到的數值為I,則I和I0之間有一復雜的關系。即I=I0·f(ρ,d,Z,E0),其中ρ為介質的密度,d為γ源與探測器間的距離,Z為介質的原子序數,E0為入射γ射線能量。

在已知條件下做好量板,給出I/I0與ρ,d的關系曲線。在野外測出I/I0後,即可根據量板查出相應的密度值ρ。

7.1.2.8 X熒光測量

X射線熒光測量,也稱X熒光測量,是一種人工放射性方法,用來測定介質所含元素的種類和含量。其工作原理是利用人工放射性同位素放出的X射線去激活岩石礦物或土壤中的待測元素,使之產生特徵X射線(熒光)。測量這些特徵X射線的能量便可以確定樣品中元素的種類,根據特徵X射線的照射量率可測定該元素之含量。由於不同原子序數的元素放出的特徵X射線能量不同,因而可以根據其能量峰來區分不同的元素,根據其強度來確定元素含量,且可實現一次多元素測量。

根據激發源的不同,X熒光測量可分為電子激發X熒光分析、帶電粒子激發X熒光分析、電磁輻射激發X熒光分析。

X熒光測量可在現場測量,具有快速、工效高、成本低的特點。

7.1.2.9活化法

活化分析是指用中子、帶電粒子、γ射線等與樣品中所含核素發生核反應,使後者成為放射性核素(即將樣品活化),然後測量此放射性核素的衰變特性(半衰期、射線能量、射線的強弱等),用以確定待測樣品所含核素的種類及含量的分析技術。

若被分析樣品中某元素的一種穩定同位素X射線作用後轉化成放射性核素Y,則稱X核素被活化。活化分析就是通過測量標識射線能量、核素衰變常數、標識射線的放射性活度等數據來判斷X的存在並確定其含量。

能否進行活化分析以確定X核素存在與否,並作定量測量,關鍵在於:①X核素經某種射線照射後能否被活化,並具有足夠的放射性活度;②生成的Y核素是否具有適於測量的衰變特性,以利精確的放射性測量。

活化分析可分為中子活化分析、帶電粒子活化分析、光子活化分析等。

(1)中子活化分析

根據能量不同,中於可分為熱中子、快中子等。熱中子同原子核相互作用主要是俘獲反應,反應截面比快中子大幾個量級。反應堆的熱中子注量率一般比快中子的大幾個量級,因此熱中子活化分析更適應於痕量元素的分析。

(2)帶電粒子活化分析

常用的帶電粒子有質子、α粒子、氘核、氚核等,也有重粒子。

帶電粒子活化分析常用於輕元素,如硅、鍺、硼、碳、氮、氧等的分析。

(3)光子活化分析

常用電子直線加速器產生的高能軔致輻射來活化樣品。

⑩ 常見的金屬牌號鑒定的檢測標准有哪些

1.按照國家地區來分:
GB——國家標准;
GB/T——推薦性國家標准;
ISO——國際標准化組織;
EN——歐洲標准;
ASTM——美國材料與試驗協會;
JIS——日本工業標准。
2.按照檢測儀器設備來分:
①火花直讀光譜儀檢測標准:
不銹鋼:GB/T 11170等;
中低合金鋼:GB/T 4336等;
鑄鐵:GB/T 24234等;
銅合金:YS/T 482等;
鋁合金:GB/T 7999等;
鎂合金:GB/T 13748.21等;
鋅合金:GB/T 26042等;
鈦合金:ASTM E2994等;
焊錫(有鉛/無鉛):JSA JIS Z3910等。
②電感耦合等離子體發射光譜儀ICP-OES檢測標准:
低合金鋼:GB/T 20125等;
不銹鋼:SN/T 2718、SN/T 3343等;
其他鋼鐵:EPA 6010D等;
銅合金:GB/T 5121系列等;
鋁合金:GB/T 20975.25等;
鋅合金:GB/T 12689.12等;
鎂合金:GB/T 13748.20等;
鎳合金:GB/T 14265等;
鈦合金:GB/T 14265、HB 7716.13等。
③碳硫分析儀檢測標准:
鋼鐵:GB/T 20123等。

閱讀全文

與金屬材料放射性檢測方法基本標准相關的資料

熱點內容
戴隱形眼鏡的方法視頻 瀏覽:44
插鋼絲繩的方法視頻 瀏覽:453
車胎胎壓檢測方法 瀏覽:651
引產方法有哪些 瀏覽:242
鉻釩元素的作用及食用方法 瀏覽:793
綠茶品種鑒別方法 瀏覽:143
12588怎麼用簡便方法計算 瀏覽:610
有什麼方法對付噪音不想改的人 瀏覽:412
塑料鐵軌安裝方法 瀏覽:631
粉倉門密封解決方法 瀏覽:739
大理石牆板安裝方法視頻 瀏覽:308
傷寒最快的治療方法用什麼土方法 瀏覽:236
13種徒手核心力量訓練方法 瀏覽:578
食用瓜子的方法 瀏覽:483
衛生間瓷磚內水管漏水解決方法 瀏覽:654
電腦上橫設置在哪裡設置方法 瀏覽:52
論撿肥皂的正確方法txt 瀏覽:846
陰陽平衡的最佳調整方法 瀏覽:989
電力電纜鋁芯線的連接方法 瀏覽:368
湖北成品支架的安裝方法 瀏覽:978