導航:首頁 > 解決方法 > 液體儲罐油氣線檢測方法

液體儲罐油氣線檢測方法

發布時間:2022-10-01 08:34:44

1. 油氣管道變形檢測的技術方法有哪些

一、管道檢測技術的發展方向
長輸油氣管道運行過程中通常受到來自內、外兩個環境的腐蝕,內腐蝕主要由輸送介質、管內積液、污物以及管道內應力等聯合作用形成;外腐蝕通常因塗層破壞、失效產生。內腐蝕一般采

用情管、加緩蝕劑等手段來處理,近年來隨著管道業主對管道運行管理的加強以及對輸送介質的嚴格要求,內腐蝕在很大程度上得到了控制。目前國內外長輸油氣管道腐蝕控制主要發展方向是在外防腐方面,因而管道檢測也重點針對因外腐蝕造成的塗層缺陷及管道缺陷。
近年來,隨著計算機技術的廣泛普及和應用,國內外檢測技術都得到了迅猛發展,管道檢測技術逐漸形成管道內、外檢測技術(塗層檢測、智能檢測)兩個分枝。通常情況下塗層破損、失效處下方的管道同樣受到腐蝕,管道外檢測技術的目的是檢測塗層及陰極保護有效性的基礎上,通過挖坑檢測,達到檢測管體腐蝕缺陷的目的,對於目前大多數布局北內檢測條件的管道是十分有效的。管道內檢測技術主要用於發現管道內外腐蝕、局部變形以及焊縫裂紋等缺陷,也可間接判斷塗層的完好性。
二、管道外檢測技術
埋地管道通常採用塗層與電法保護(CP)共同組成的防護系統聯合作用進行外腐蝕控制,這2種方法起著一種互補作用:塗層是陰極保護即經濟又有效,而陰極保護又使塗層出現針孔或損傷的地方受到控制。該方法是已被公認的最佳保護辦法並已被廣泛用於對埋地管道腐蝕的控制。
塗層是保護埋地管道免遭外界腐蝕的第一道防線,其保護效果直接影響著電法保護電流的工作效率,NACE1993年年會第17號論文指出:「正確塗敷的塗層應該為埋地構件提供99 %的保護需求,而餘下的1%才由陰極保護提供」。因此要求塗層具有良好的電絕緣性、黏附性、連續性及耐腐蝕性等綜合性能,對其完整性的維護是至關重要的。塗層綜合性能受許多因素的影響,諸如塗層材料、補口技術、施工質量、腐蝕環境以及管理水平等,並且管道運行一段時間後,塗層綜合性能會出現不同程度的下降,表現為老化、龜裂、剝離、破損等狀況,管體表面因直接或間接接觸空氣、土壤而發生腐蝕,如果不能對塗層進行有效的檢測、維護,最終將導致管道穿孔、破裂破壞事故。
塗層檢測技術是在對管道不開挖的前提下,採用專用設備在地面非接觸性地對塗層綜合性能進行檢測,科學、准確、經濟地對塗層老化及破損缺陷定位,對缺陷大小進行分類統計,同時針對缺陷大小、數量進行綜合評價並提出整改計劃,以指導管道業主對管道塗層狀況的掌握,並及實踐性維護,保證塗層的完整性及完好性。
國內實施管道外檢測技術始於20世紀80年代中期,檢測方法主要包括標准管/地電位檢測、皮爾遜(Pearson)塗層絕緣電阻測試、管內電流測試等。檢測結果對塗層的總體評價到了重要作用,但在缺陷准確定位、合理指導大修方面尚有較大的差距。近年來,通過世界銀行貸款以及與國外管道公司交流,管道外檢測設備因價格相對較為便宜,操作較為方便,國外管道外間的技術已廣泛應用於國內長輸油氣管道塗層檢測,目前國內管道外檢測技術基本上達到先進發達國家水平,在實際工作中應用較為廣泛的外檢測技術主要包括:標准管/地電位檢測、皮爾遜檢測、密間距電位測試、多頻觀眾電流測試、直流電為梯度測試。
1. 標准管/地點位檢測技術(P/S)
該技術主要用於監測陰極保護效果的有效性,採用萬用表測試接地CU/CuSO4電極與管道金屬表面某一點之間的電位,通過電位距離曲線了解電位分布情況,用以區別當前電位與以往電位的差別,還可通過測得的陰極保護電位是否滿足標准衡量塗層狀況。該法快速、簡單,現仍廣泛用於管道管理部門對管道塗層及陰極保護日常管理及監測中。
2. 皮爾遜監測技術(PS)
該技術是用來找出塗層缺陷和缺陷區域的方法,由於不需陰極保護電流,只需要將發射機的交流信號(1000 Hz)載入在管道上,因操作簡單、快速曾廣泛使用與塗層監測中。但檢測結果准確率低,以受外界電流的干擾,不同的土壤和塗層段組都能引起信號的改變,判斷是缺陷以及缺陷大小依賴於操作員的經驗。
3. 密間距電位測試技術(CIS、CIPS)
密間距電位測試(Close Interval Survey)和密間距極化電位(Close Interval Potential Survey)監測類似於標准管/地電位(P/S)測試法,其本質是管地電位加密測試和加密斷電電位測試技術。通過測試陰極保護在管道上的密集電位和密集化電位,確定陰極保護效果的有效性,並可間接找出缺陷位置、大小,反映塗層狀況。該方法也有局限性,其准確率較低,其准確率較低,依賴於操作者經驗,易受外界干擾,有的讀書誤差達200~300 mV。
4. PCM多頻管中電流測試
多頻管中點留法是監測塗層漏電狀況的新技術,是以管中電流梯度測試法為基礎的改進型塗層檢測方法。它選用了目前較為先進的PCM儀器,按已知檢測間距測出電流量,測定電流梯度的分布,描繪出整個管道的概貌,可快速、經濟地找出電流信號漏失較嚴重的管段,並通過計算機分析評價塗層的狀況,再使用PCM儀器的「A」字架檢測地表電位梯度精確定位塗層破點。該方法是與不同規格、材料的管道,可長距離地檢測整條管道,受塗層材料、地面環境變化影響較小,適合於復雜地形並可對塗層老化狀況評級;可計算出管段塗層面電阻 R g值,對管道塗層劃分技術等級,評價管道塗層的狀況,提出塗層維護方式。採用專用的耦合線圈,還可對水下管道進行塗層檢測。
5. 直流電位梯度(DCVG)方法
該方法通過檢測流至埋地管道塗層破損部位的陰極保護電流在土壤介質上產生的電位梯度(即土壤的 IR降)並依據IR降的百分比來計算塗層缺陷的大小,其優點在於不受交流電干擾,通過確定電流是流入還是流出管道,還可判斷管道是否正遭受到腐蝕。
6. 幾種測試方法的比較
近幾年,筆者在四川龍——蒼線、工——自線、瀘——威線、申——倒線等多條管道塗層及陰極保護有效性檢測方面,對上述幾種方法進行了比較,發現各種塗層缺陷檢測技術都是通過在管道上載入直流或交流信號來實現的,不同的僅是在結構上、性能上、功用上的差異。每種方法各有側重,在對塗層綜合性能評價方面均具有一定說服力,但各有利弊。
為克服單一檢測技術的局限性,現場檢測中筆者發現綜合幾種檢測方法對塗層缺陷進行檢測,可以彌補各項技術的不足。對於由陰極保護的管道,可先參考日常管理記錄中(P/S)的測試值,然後利用CIPS技術測量管道的管地電位,所測得的斷電電位可確定陰極保護系統效果,在判斷塗層可能有缺陷後,利用DCVG技術確定每一缺陷的陰極和陽極特性,最後利用DCVG確定缺陷中心位置,用測得的缺陷泄漏電流流經土壤造成的IR降確定缺陷的大小和嚴重性,以此作為選擇修理的依據。對於未事假陰極保護的管道,可先用PCM測試技術確定電流信號漏失較嚴重的管段,然後在PCM使用的「A」字架或皮爾遜檢測技術精確定位塗層破損點,確定塗層破損大小。PCM測試技術也可用於具有陰極保護的管道,其檢測精度略低於DCVG技術。
由於所有塗層檢測技術均是在管道上施加電信號,因此各種技術均存在一些不足,對某些塗層缺陷無法查找,如部分露管塗層破損處管體未與大地接觸,信號因不能流向大地形成迴路,只能通過其他手段查找;因屏蔽作用,不適用於加套管的穿越管線;所有技術均不能判定塗層是否剝離。
三、管道內檢測技術
管道內檢測技術是將各種無損檢測(NDT)設備加在島清管器(PIG)上,將原來用作清掃的非智能改為有信息採集、處理、存儲等功能的智能型管道缺陷檢測器(SMART PIG),通過清管器在管道內的運動,達到檢測管道缺陷的目的。早在1965年美國Tuboscopc公司就已將漏磁通(MFL)無損檢測(NDT)技術成功地應用於油氣長輸管道的內檢測,緊接著其他的無損內檢測技術也相繼產生,並在嘗試中發現其廣泛的應用前景。
目前國外較有名的監測公司由美國的Tuboscopc GE PII、英國的British Gas、德國的Pipetronix、加拿大的Corrpro,且其產品已基本上達到了系列化和多樣化。內檢測器按功能可分為用於檢測管道幾何變形的測徑儀、用於管道泄漏檢測儀、用於對因腐蝕產生的體積型缺陷檢測的漏磁通檢測器、用於裂紋類平面型缺陷檢測的渦流檢測儀、超聲波檢測儀以及以彈性剪切波為基礎的裂紋檢測設備等。下面對應用較為廣泛的幾種方法進行簡要介紹。
1. 測徑檢測技術
改技術主要用於檢測管道因外力引起的幾何變形,確定變形具體位置,有的採用機械裝置,有的採用磁力感應原理,可檢測出凹坑、橢圓度、內徑的幾何變化以及其他影響管道內有效內徑的幾何異常現象。
2. 泄漏檢測技術
目前較為成熟的技術是壓差法和聲波輻射方法。前者由一個帶測壓裝置儀器組成,被檢測的管道需要注以適當的液體。泄漏處在管道內形成最低壓力區,並在此處設置泄漏檢測儀器;後者以聲波泄漏檢測為基礎,利用管道泄漏時產生的20~40 kHz范圍內的特有聲音,通過帶適宜頻率選擇的電子裝置對其進行採集,在通過里程輪和標記系統檢測並確定泄漏處的位置。
3. 漏磁通過檢測技術(MFL)
在所有管道內檢測技術中,漏磁通檢測歷史最長,因其能檢測出管島內、外腐蝕產生的體積型缺陷,對檢測環境要求低,可兼用於輸油和輸氣管道,可間接判斷塗層狀況,其應用范圍最為廣泛。由於漏磁通量是一種相對地噪音過程,即使沒有對數據採取任何形式的放大,異常信好在數據記錄中也很明顯,其應用相對較為簡單。值得注意的是,使用漏磁通檢測儀對管道檢測時,需控制清管器的運行速度,漏磁通對其運載工具運行速度相當敏感,雖然目前使用的感測器替代感測器線圈降低了對速度的敏感性,但不能完全消除速度的影響。該技術在對管道進行檢測時,要求管壁達到完全磁性飽和。因此測試精度與管壁厚度有關,厚度越大,精度越低,其適用范圍通常為管壁厚度不超過12 mm。該技術的精度不如超聲波的高,對缺陷准確高度的確定還需依賴操作人員的經驗。
4. 壓電超聲波檢測技術
壓電超聲波檢測技術原理類似於傳統意義上的超聲波檢測,感測器通過液體耦合與管壁接觸,從而測出管道缺陷。超聲波檢測對裂紋等平面型缺陷最為敏感,檢測精度很高,是目前發現裂紋最好的檢測方法。但由於感測器晶體易脆,感測器元件在運行管道環境中易損壞,且感測器晶體需通過液體與管壁保持連續的耦合,對耦合劑清潔度要求較高。因此僅限於液體輸送管道。
5. 電磁波感測檢測技術(EMAT)
超聲波能在一種彈性導電介質中得到激勵,而不需要機械接觸或液體耦合。這種技術是利用電磁物理學原理以新的感測器替代了超聲波檢測技術中的傳統壓電感測器。當電磁波感測器載管壁上激發出超聲波能時,波的傳播採取已關閉內、外表面作為「波導器」的方式進行, 當管壁是均勻的,波延管壁傳播只會受到衰減作用;當管壁上有異常出現時,在異常邊界處的聲阻抗的突變產生波的反射、折射和漫反射,接收到的波形就會發生明顯的改變。由於基於電磁聲波感測器的超生壁檢測最重要的特徵是不需要液體耦合劑來確保其工作性能。因此該技術提供了輸氣管道超聲波檢測的可行性,是替代漏磁通檢測的有效方法。

2. 儲油氣層的檢測方法常規分析有哪些

1)薄片及鑄體薄片鑒定

表2—3 岩漿岩及變質岩儲油氣層特徵(1)礫岩。
鏡下一般只能鑒定細礫岩,鑒定時使用低倍鏡。在手標本鑒定基礎上進一步鑒定礫石成分與填隙物成分和結構等。
(2)砂岩。
①成分及含量。
a.碎屑顆粒,指石英、長石、岩屑(包括岩漿岩、變質岩、沉積岩)及其它如重礦物及雲母等顆粒。
b.雜基,主要指泥質和細粉砂。
c.膠結物,指鐵質、硅質、碳酸鹽礦物(方解石、白雲石、鐵白雲石、菱鐵礦等),自生的粘土礦物(高嶺石、蒙皂石、綠泥石、伊/矇混層等),其次還有石膏、硬石膏、海綠石等,判斷它們含量及形成順序。
②結構:a.顆粒結構,顆粒大小、形狀、磨圓等;b.填隙物結構;c.孔隙(包括孔隙含量類型、大小、幾何形狀、連通性、分選性),鑄體薄片可有效地統計面孔率;d.支撐型與膠結類型。
③顯微構造:如微遞變、微沖刷、微細層理等。
④含油及化石情況。
⑤岩石定名:顏色+構造+粒度+成分。一般砂岩類型可分為純石英砂岩、石英砂岩、次岩屑長石砂岩或次長石岩屑砂岩、長石岩屑砂岩或岩屑長石砂岩、長石砂岩、岩屑砂岩等。
⑥砂岩的成岩作用。
⑦砂岩成因分析。
應從以下幾方面入手:
a.從碎屑成分看陸源區母岩性質及大地構造情況;b.從成分成熟度看風化作用強弱和搬運距離;c.從結構成熟度(分選、磨圓、雜基含量)及沉積構造看搬運介質方式,推斷沉積環境;d.從化學膠結物推斷成岩環境及成岩作用;e.從顏色(岩石及膠結物)推斷沉積環境。
(3)火山碎屑岩。
火山碎屑岩是火山作用產生的各種碎屑物沉積後,經熔結、壓結、水化學膠結等成岩作用形成的岩石。
在薄片下可確定火山碎屑物由石屑(包括岩屑、火山彈、塑性岩屑)、晶屑、玻屑(剛性及塑性岩屑)組成。
與石油儲層密切相關的岩石為凝灰岩、沉凝灰岩及火山碎屑沉積岩。
在薄片鑒定中要密切注意火山碎屑岩中原生或次生孔、洞、縫發育、保存與充填情況。
(4)泥岩(粘土岩)。
在手標本基礎上進一步鑒定粘土岩成分。包括機械混入物成分及含量,自生礦物種類,形狀、含量,生物化石等,鑒定結構、構造次生變化、結合X衍射資料對泥岩定名。
(5)碳酸鹽岩。
在手標本肉眼觀察鑒定的基礎上,偏光顯微鏡下系統描述鑒定岩石薄片:
①礦物成分。碳酸鹽岩中常見礦物有:a.碳酸鹽礦物主要是方解石、白雲石,其次是鐵白雲石、鐵方解石、菱鐵礦、菱鎂礦和菱錳礦等;b.自生的非碳酸鹽礦物,如石膏、硬石膏、重晶石,天青石、石英、海綠石等;c.陸源碎屑混入物,如粘土礦物、石英、長石及一些重礦物等。
②結構組分和結構類型。
碳酸鹽岩的結構在一定程度上反映了岩石的成因,它是岩石的重要鑒定標志,也是岩石分類命名的依據。
a.具顆粒結構的碳酸鹽岩,顆粒類型包括內碎屑、鮞粒、生物顆粒、球粒、藻粒等;填隙物由化學沉澱物(亮晶膠結物)及泥晶基質及少量陸原雜基及滲流粉砂組成;注意它們的膠結類型。
b.具晶粒結構的碳酸鹽岩,注意晶粒的大小,自形程度。
c.具生物格架的碳酸鹽岩描述造礁生物種類、骨架的顯微結構、礦物成分,大小分布等特點。
③沉積構造。
包括顯微層理、微型沖刷、充填構造、結核構造、縫合線及成岩收縮縫等,烏眼及示底構造、生物鑽孔、潛穴生物擾動等。
④成岩作用。
主要有溶解作用、礦物的轉化作用和重結晶作用、膠結作用、交代作用、壓實作用和壓溶作用。注意觀察這些成岩階段(同生期、早成岩期、晚成岩期、表生期)、不同成岩環境(海底成岩環境和大氣淡水成岩環境,淺—中埋藏成岩環境、深埋藏成岩環境、表生成岩環境)中的特點和識別標志。
⑤孔隙和裂縫。
用鑄體薄片觀察原生及次生孔隙,以次生孔隙發育為特徵的儲層還包括構造裂縫描述與觀察。從孔隙結構類型來講,主要有粒內、粒間、晶間、生物格架、遮蔽、鳥眼、鑄模等孔隙,還有溶孔、溶縫、溶溝、溶洞等。
⑥岩石綜合定名。
附加岩石名稱(顏色+成岩作用類型+特殊礦物+特殊結構)+岩石基本名稱(結構命名+礦物成分)命名,主要岩石類型有:泥晶灰岩或白雲岩、粒屑泥晶灰岩或白雲岩、泥晶粒屑灰岩或白雲岩、亮晶粒屑灰岩或白雲岩。
⑦環境分析。
a.顆粒形成環境;b.顆粒沉積環境;c.成岩研究。
(6)岩漿岩與變質岩。
①岩漿岩。我國岩漿岩儲層的岩石類型以熔岩為主,最主要的是玄武岩和安山岩、次火山岩、流紋岩和脈岩類。
②變質岩。包括區域變質岩、混合岩、接觸變質岩和動力變質岩。
2)孔隙度、滲透率、含油氣飽和度、含水飽和度測定儲層孔隙特徵的研究是儲層研究的一項重要內容,這是因為關系著儲層的儲集性能和產能。流體在儲集層中的滲流不僅受限於宏觀儲層的幾何形態而更多的受微觀的孔隙特徵所制約,因而研究儲層的孔隙特徵對儲層的認識與評價,油氣層產能的預測、油水在油層中的運動、水驅油效率及提高採收率均具有實際意義。
(1)孔隙度。
岩樣的總孔隙度Φ=Vp/Vf是指岩樣所具有的孔隙度容積Vp與岩樣的外表體積Vf的比值,通常以百分數表示。
通常使用的孔隙度為有效孔隙度Φe=Vep/Vf,其中Φe為有效孔隙度(流動連通孔隙度),Vep為有效孔隙體積(除去死孔隙及微毛細管孔隙)。有效孔隙度是計算儲量和評價儲層特性的重要指標,在實驗室常用飽和煤油法及氣體法進行測定。
(2)滲透率。
在一定的壓差下岩石連通的孔隙系統可以讓油、氣、水在其中流動。為衡量流體通過多孔介質的能力通常採用滲透率來量度。當岩石為單流體100%飽和且流體與岩石不發生任何物理化學作用時所測得的岩石滲透率為絕對滲透率。
決定滲透率的因素:①孔隙半徑,K=Φr2/8(K滲透率、Φ孔隙度、r孔隙半徑);②岩石比表面,岩石比表面越大,滲透率越小;③滲透率隨岩石顆粒變細而急劇下降,砂岩滲透率隨著泥質含量增加而急劇下降,另外油層岩石的沉積條件及埋藏深度也影響滲透率大小。
孔隙度、滲透率資料必須繪制孔隙度直方圖、滲透率直方圖等。
(3)流體飽和度。
所謂飽和度系指單位體積內油、氣、水所佔的體積百分數。

式2—1中:Vo、Vg、Vw分別為油、氣、水在油層孔隙中所佔體積;So、Sg、Sw分別為油、氣、水飽和度。
3)粒度分析、重礦分析(1)粒度分析。
測定碎屑沉積物中不同粗細顆粒含量的方法稱粒度分析。粒度是碎屑沉積物的重要結構特徵,是其分類命名(如礫、砂、粉砂、粘土等)的基礎,是用來研究其儲油性能的重要參數(如粒度中值、分選系數等),有時也可用粒度資料作為地層對比的輔助手段。但是粒度分析更廣泛地應用於沉積學的研究,近幾年來已成為沉積環境研究的重要標志。
①粒度分析方法
a.篩析法;b.沉降法;c.薄片粒度分析。
目前已發展成用圖像法及顆粒計數法來取代人工薄片顆粒計數法。
②粒度分析資料整理。
a.編制粒度分析數據表(各粒度的重量百分比及各粒級累積重量百分比),數據繪製成圖(包括直方圖、頻率曲線圖、累積曲線圖、概率曲線圖、C—M圖);b.粒度參數:粒度平均值(Mz)、中值(Md)、眾數(Mo)、標准偏差(σ1)、偏度(SK1)、峰度(Kg)。
(2)重礦分析。
將砂岩中比重大於2.86的礦物分離出來進行專門研究的方法叫重礦分析,重礦物在碎屑岩中含量很少,一般不超過1%,主要分布在0.25~0.05mm粒級內。
重礦物資料分析及意義。
①母岩性質分析:不同類型母岩其重礦物組合不同,利用重礦物組合與含量變化來解釋母岩區(表2—4)。
②物質來源方向分析:利用水平方向上重礦物種類和含量變化圖,可以推測物質的幾個來源方向。
③母岩侵蝕順序確定:重礦物剖面同一侵蝕區上下層位可有不同的母岩,隨時間進展,最先侵蝕的最上面層位的岩層,它們產生的物質(包括重礦物組合)在沉積區是沉積在最底層;最後受侵蝕的是最下部層位的母岩,但沉積在最上部層位中。

表2—4 不同母岩的重礦物組合④劃分和對比地層。

3. 儲油氣層的檢測方法是什麼

1.常規分析1)薄片及鑄體薄片鑒定

表2—16 岩屑含油等級指數(以冀東油田為例)

(4)油田水及乾酪根中有機酸測定。

油田水及乾酪根中的有機酸在埋藏成岩次生孔隙形成中有重要的作用。這些低碳酸(C1—C6)的單、雙官能團羧酸(包括甲、乙、丙、丁、戊酸及甲二酸、乙二酸、丙二酸、丁二酸、戊二酸)能有效地絡合礦物中的鋁,形成易溶於水的有機鹽,從而大大提高了鋁硅酸鹽及碳酸鹽礦物的溶解度,導致孔隙度增加。因而有機酸高濃度帶也就是次生孔隙發育帶。

Surdam R.C.(1982)對次生孔隙形成曾作了系統的實驗研究。研究結果表明,導致碳酸鹽礦物,特別是硅酸鹽礦物溶解的是孔隙水中的羧酸。

Carothers和Kharaba(1978)曾查明,在80~140℃的溫度范圍內,油田水中所含羧酸可達100~1000μg/g。

目前,測定有機酸的方法有離子色譜法、氣相色譜法、液相色譜法、毛細管電泳法等多種。

4. 測量儲罐液位的方法有哪些

液位測量有哪些測量方法

在許多公司和應用領域中,必須進行液位測量。可以連續檢查現有貨物數量,以保護不得空轉或出於其他原因運行的電動機和泵。用戶可以在工業規模上使用許多不同的技術。我們介紹了不同的變體及其優點和缺點。

進行全面液位測量的充分理由

並不是每個工廠和區域都需要液位測量。但是對供應淡水或灰水,持續測量也很重要。在這種情況下,將安裝合適的液位感測器,該液位感測器會顯示液位的絕對值或在超過或未達到某些極限值時觸發警報。所用方法的類型尤其取決於各個測量要求,還取決於液體的類型及其粘度。因此,重要的是要預先確定合適的合適的液位測量技術。

各種測量方法概述

首先,我們應該概述一下液位測量的不同方法。因為可以根據簡單的標准區分不同的測量方法。一個區別在於:

機械測量方法

電導率測量

電容測量

光學測量

以及其他應用領域受限的方法

連續測量和限位開關

基本上,首先必須細分各種測量方法。連續液位測量與液位限位開關的使用有所區別。當存在的液體量超過或低於限值時,這些限位開關始終跳閘。這些系統通常根據非常簡單的原理工作,並在許多行業和製造領域中使用。但是,如果要監視和控制液體的相對量,則只能進行連續的液位測量。這可以使用各種方法監控儲罐或水池中的當前液位,因此可以輸出固定的算術變數,其他機器可以在數據處理中採用該變數。通常,使用自動化系統時只能考慮連續的液位測量。

01

機械測量方法

機械測量方法使用許多不同的方法來實現全面而精確的物位測量。最簡單的形式是浮子,它浮在液體上。根據浮子的高度,可以確定水箱中的水位,並可以計算水位。游泳者可用於許多不同的場景和應用領域。振動感測器也屬於機械測量方法。通常,製造一種音叉來使壓電振動,並將其引入液體介質中。介質和介質的數量會改變聲音信號的頻率。只能在某些區域有效使用的液位感測器。也經常使用所謂的靜液壓液位測量。計算液體表面和底部之間的壓力差,以便液位感測器可以確定液位的確切液位,這種液位測量方法也稱為壓力差測量。另一個機械式液位測量是使用所謂的液位探頭,對於我們的解決方案,我們也更喜歡這種探頭。這種液位感測器保留在液體中,並使用靜液壓原理確定液位。壓敏感測器元件可以精確地測量壓力及其變化並將其轉換為電信號,該電信號可以傳輸到各種輸出設備。

02

深度電導率測量

根據液體的類型及其性質,在不同的情況下使用導電性測量,即電導率測量。電流通過兩個電極之間的液體。但是,使用這種方法只能記錄特定級別。因此,這種液位感測器僅是用於液位檢測的裝置,並且只能與導電液體一起使用。液體介質的電導率也可用於熱導率測量。涉及由於與液體接觸而導致的加熱元件上的溫度變化。因此,您可以看到各種電導率測量方法僅在一定程度上適用於液位測量,因此僅在特殊條件下使用。

03

電容測量

電容測量通常僅在某些液體中才可能進行,因為電極處的電容會根據介質和浸入深度而變化。使用這種液位感測器,取決於介質,可以實現連續測量和純極限值採集。

04

其他測量方法概述

還有其他液位測量方法可以與適當的液位感測器和適當的介質一起使用。其中包括使用超聲波或高頻微波進行液位測量,還包括使用雷達和輻射測量法進行測量。但是,許多這些方法僅在非常有限的應用領域中使用。通常在無法使用常規液位感測器的地方。

5. (三)油氣檢測方法

找到了砂體並不意味著找到了油氣,勘探的目的在於尋找油氣而不在於尋找砂體,如何判斷砂體是否含有油氣是提高鑽探成功率的關鍵。在對飛雁灘地區上百口探井及開發井進行統計分析的基礎上,通過儲層的精細標定,發現不同類型的河道沉積微相,其含油氣性也存在較大的差別。通常主河道及牛軛湖微相,在沉積時,由於物源豐富,水動力條件較強,砂岩粒度適中,儲滲條件相對較好,含油級別高,其地震特徵為 「強波谷、低頻,有下拉現象」,平面上呈彎曲的長條形展布,如鑽遇的埕 130 「S」形河道上的井均獲工業油流。而堤岸、決口扇及河漫灘沉積,其儲層物性稍差,因而含油性較差,如埕 131 井。以上現象說明了砂體成藏的復雜性及進行含油氣預測的必要性。

圖 8-27 飛雁灘地區館陶組 14 + 5孔隙度、滲透率預測圖 (紅色為高值區)

1.正演模擬砂岩振幅與厚度、含油性及沉積相的關系

從統計的飛雁灘油田砂層厚度與振幅的散點圖來看,表面上看雜亂無章,不具備理論上的調諧厚度范圍內振幅與厚度的理想線性關系,但總體趨勢表現為振幅隨地層厚度增加而增加。仔細分析後發現,這些散點呈油水相間的 4 個條帶。每一條帶內振幅隨厚度線性增大的趨勢十分清楚。形成上述現象的原因我們分析認為,主要是不同沉積相帶、不同含油屬性的砂體存在速度差異所致。因為從速度與振幅、速度與頻率的關系來看,速度與振幅具有明顯的正相關,而速度與頻率則呈現負相關的特性。

為進一步探討砂岩振幅與厚度、含油性及沉積相的關系,通過理想模型進行了分析。設計了一個菱形地質模型,選取 2450、2500、2550、2600 m/s 分別作為非河道油砂、非河道水砂、河道油砂、河道水砂的速度,以 2200 m/s 作為泥岩的速度,分別進行正演褶積,提取相應的振幅參數進行對比研究。發現當泥岩圍岩速度不變的情況下,河道含水砂岩、河道含油砂岩、非河道水砂和非河道油砂,在調諧厚度變化范圍內,各自厚度與振幅具有典型的線性變化關系,呈現明顯的 4 個條帶 (圖 8-28)。厚度與振幅的線性變化關系,可以表示為:

H = K1* Am + K2

式中: K1、K2為常數; H 為厚度; Am 為振幅。

從對比來看,同一沉積亞相同種屬性的砂岩厚度每增加 5 m 振幅提高 200 ~240。同一厚度同一沉積亞相的砂岩水層比油層振幅高100 ~120,相當於同種屬性砂岩厚度增加1.5 ~2.5m。同種屬性、同樣砂層厚度,河道砂岩比非河道砂岩振幅高 220 ~240。由此來看,館上段河道砂體油藏砂岩儲層的振幅與砂層的厚度、沉積相及含油性等有密切的關系,三者都不同程度地控制了振幅的變化,但以沉積亞相和砂層厚度對振幅的貢獻最大。

2.氣藏的預測

氣藏以亮點為特徵,但不同沉積亞相其亮點的強度不同,通過對工區亮點進行分類,對亮點邊界和氣水邊界正演分析,可以較好地落實氣藏的分布范圍。

(1)亮點的分類及沉積亞相劃分

通過對本區 20 多口井的氣層厚度、深度、速度、自然電位特徵形態及地震相的氣層振幅的資料統計,擬合了本區亮點河道亞相與非河道亞相氣層厚度與振幅的不同關系曲線,確定了Ⅰ、Ⅱ類亮點相對振幅分區門檻值為 7000,確定了河道亞相和非河道亞相亮點含氣的相對振幅門檻值為 3000、2000 (圖 8-29)。

通過對本區已知井振幅與速度的統計可以看出,非河道亞相具有相對較高的層速度和相對較低的振幅值,而河道亞相正好相反,具有相對較低的層速度和相對較高的振幅值,從實際統計的資料出發,我們設計了河道亞相和非河道亞相氣砂體正演模型,通過提取其地震響應的振幅參數,並與相應的氣層厚度擬合關系曲線,可以看出,其振幅與厚度的變化規律與根據實際井資料反演的儲層厚度的變化規律相吻合,從而證明了用井資料所反演儲層厚度的方法是正確的。

從河道亞相與非河道亞相振幅與厚度的擬合曲線圖上還可以看出,Ⅱ類亮點區包括有兩種沉積亞相: 河道亞相、非河道亞相。對比要區分開來,才能確保反演氣層厚度和儲量計算的准確性。為此,我們主要依據亮點的形態進行劃分: 河道沉積的條帶狀亮點、廢棄河道形成的牛軛狀亮點歸為河道亞相; 漫灘沉積的土豆狀亮點、決口扇形成的燒瓶狀亮點歸為非河道亞相。

綜上所述,對每個亮點不僅進行Ⅰ、Ⅱ類的劃分,還要進行沉積亞相的劃分,這樣就為下一步不同沉積亞相亮點氣層厚度反演的准確性和亮點儲量計算的可靠性打下了必要的基礎。

(2)亮點邊界與氣水邊界劃分

1)亮點邊界的確定。從模型分析和實際井的統計規律看出,河道亞相和非河道亞相振幅和厚度曲線分區明顯,所以在確定亮點邊界時,河道亞相和非河道亞相的亮點邊界的門檻值不同,所以根據實際井的統計規律把河道亞相的亮點振幅值大於 3000 和非河道亞相亮點振幅值大於 2000 的范圍確定為亮點含氣的范圍。

圖 8-28 河道砂體的振幅與厚度、沉積相及含油性關系圖

圖 8-29 飛雁灘地區氣層厚度與振幅關系圖

2)亮點氣水邊界的模型分析。飛雁灘氣田的儲層主要有純氣和氣水砂岩兩種,能否利用地震資料確定氣水邊界呢? 為此,我們根據本區實際的地質資料設計了氣水砂岩的透鏡體模型,從其地震響應提取振幅值,製作厚度與振幅變化曲線,可以看出,當透鏡體厚度大於 36 m (即 λ/2)時,氣水邊界才表現出來 (圖 8-30),由於本區砂岩為曲流河的沉積,厚度一般小於 36 m,所以在本區確定氣水砂岩的氣水邊界是十分困難的。

圖 8-30 亮點氣水邊界的模型分析

3.油藏的檢測

(1)瞬時子波吸收分析技術

地震波在地下傳播過程中,除整體能量衰減外,頻率成分也隨介質不同而有不同程度的衰減。由於介質的黏滯效應,地震波高頻成分將在傳播過程中衰減,特別是在疏鬆介質或孔隙內充滿氣體的介質中,地震波高頻能量將會很快衰減。因此地震波在傳播過程中其高頻能量衰減規律可用於岩石類型、孔隙度、流體類型等分析。吸收分析就是利用這一原理來分析儲層的含油、氣特徵 (圖 8-31)。在實際應用時可使用 Metalink 系統來分析儲層的含油氣性,Metalink 系統是一種瞬時子波吸收分析軟體系統,該系統利用地震振幅信息預測油氣藏,保幅處理和油氣檢測是其兩項關鍵技術。傳統的地震資料處理方法由於受到資料品質和計算能力的限制而過多的使用數字假設和約束,使地震資料的頻譜和振幅縱橫向相對關系受到很大程度的改造,這樣就不可能得到理想的保幅成果。為了確保提取的地震信息的准確性,Metalink 系統首先對地震資料進行高解析度、高信噪比和高保真方法處理,使地震信息保持相對振幅、保持頻率、保持波形。在此基礎上進行基於子波的能量吸收分析,即在復賽譜上分離地震子波和反射系數序列,求取能時變、空變的地震子波,再求取瞬時子波能量衰減的垂向分布規律,消除強反射的干擾,在疊後資料中准確分析出含油、氣儲層的吸收異常 (王宏語,2007)。

圖 8-31 瞬時子波吸收分析原理(據王宏語,2007)

瞬時子波吸收分析技術應用的主要模塊包括以下幾方面:

1)PID 相位反演反褶積。地震記錄頻譜上,子波相當於平滑的成分,而反射系數及雜訊表現為頻譜的 「毛刺」。地震記錄可以表示為子波與反射系數的褶積,地震記錄的頻譜是子波頻譜與反射系數頻譜的乘積,即 S(f)= W(f)·Rc(f),取對數後 S'(f)= W'(f)+Rc'(f),再經逆傅立葉變換到時間域 (復賽譜)。子波和反射系數分別位於復賽譜的近、遠時端,這樣就可設計一個時域濾波器分離出時變、空變子波。子波內包含地震波傳播過程中的各種振幅和相位信息,反褶積後可消除多次波及非地表一致性影響,對疊後資料還可達到譜平衡的效果 (王宏語,2007)。

2)PMO 相位動校正。一種無需輸入速度的道集內相位拉平方法。首先考察地震資料的振幅譜 和相位譜 arccos

濟陽坳陷北部館陶組油氣地質與勘探技術

濟陽坳陷北部館陶組油氣地質與勘探技術

可見,只有相位譜才包含地震旅行時信息。這樣,道集內在保留每道振幅譜的同時,使用近偏移距道相位譜代替遠道,即可實現相位拉平。PMO 能相對保幅處理展平非雙曲線相位。

3)WEA 瞬時子波吸收分析。地震記錄是地震子波與反射系數的褶積,反射系數是地層格架序列的組合,並不代表地層吸收特性,由於反射系數干擾了地震頻譜,吸收分析的結果也勢必受反射系數的影響,造成 「假亮點」現象,即強反射就有強吸收,這大大制約了吸收分析的實際應用效果。反射系數的干擾致使吸收分析在很大程度上受到反射振幅強弱的影響,而地震子波是地震波在傳播過程中受大地濾波作用的綜合載體,穩健的吸收分析應在子波頻率衰減分析的基礎上進行。WEA 就是利用這一原理,在地震道記錄滑動時窗計算地震子波,利用全記錄道信息在頻率補零時域道內插以得到可靠的小時窗地震頻譜。再使用 PID 相位反演反褶積子波提取技術在復賽譜域提取子波的振幅譜,擬合譜上的高頻能量衰減曲率。由於計算過程是小時窗滑動計算,可以得到新的子波高頻能量衰減曲率值曲線。為消除大地濾波造成的衰減隨埋深增加的影響,還需使用趨勢分析方法分離出剩餘衰減曲率輸出形成新的吸收預測道。這樣去除自然吸收背景後的異常更能反映目標儲層的吸收衰減作用,而不受地層埋深的限制。

當然,任何地球物理分析手段都要受到信噪比的影響,WEA 也不例外,在低信噪比地區需謹慎分析。至於解析度,由於小時窗滑動分析,已擺脫了 λ/ 4 的限制,但仍然要受地震采樣率的制約。從實現過程可以看出,WEA 完全利用地震信息,不需要測井資料的約束。然而,WEA 計算的吸收系數是個相對值,無法利用數值去識別氣層,這個過程需要井信息的刻度。WEA 反映強弱關系,利用已知氣井位置拾取吸收系數 μ0,大於該值的區域可以認為是氣層或油層,再利用已知乾井位置拾取吸收系數 μ1,小於該值的區域可以認為不是氣層或油層 (王宏語,2007)。

實例: 飛雁灘館上 14 + 5砂組瞬時子波分析。在地震信息分析的基礎上,確定瞬時子波吸收分析參數,主要包括不同頻率、子波長度、滑動時窗大小和吸收分析種類等參數。在此基礎上首先對過油氣井的地震剖面進行參數試驗和效果實驗。Metalink 系統可以直接對三維地震數據進行瞬時子波吸收分析,但由於數據量太大,那樣將會花很長時間。所以,將 3D 地震數據按線方向和道方向隔 10 線和10 道抽成2D 地震數據,對它們用與前述過井剖面相同的處理參數進行瞬時子波吸收分析,然後將處理結果 (segy 格式文件)載入到別的地震屬性系統 (如 MDI)進行顯示,並進行沿層吸收屬性提取 (剖面本身是吸收分析結果,提取其總能量就是吸收強度),形成吸收分析剖面圖及平面圖。通過與實際鑽井對比,該技術可以較好地預測油藏的平面分布 (圖 8-32,圖 8-33),吻合率達到了 80%。

(2)瞬時頻率法

瞬時頻率法是通過提取砂體的瞬時頻率參數對其是否含油進行判斷。在飛雁灘地區,通過提取瞬時頻率參數及對多口井的統計表明: 瞬時頻率小於 34Hz 一般為含油區,瞬時頻率大於 40Hz 為含水區,瞬時頻率在 34 ~40Hz 之間為油水過渡帶。在飛雁灘地區依據瞬時頻率進行砂體的含油氣判別所部署的井位大都與鑽井情況相符合 (圖 8-34)。由此可得出這樣的推論,砂體含流體的不同造成對地震波頻率的選擇性吸收,在地震剖面上表現為砂體含油後以低頻成分為主,砂體含水後以高頻成分為主。從應用情況看,該方法適合於判別河道砂體是否含有油氣。

圖 8-32 瞬時子波吸收分析剖面圖

圖 8-33 館陶組 14 + 5砂組瞬時子波吸收分析圖

圖 8-34 飛雁灘地區瞬時頻率和砂體的關系

6. 儲油罐油氣檢測標准

一) 重質油品分類
1、 風險重質油品:即加工工藝可能出現溶劑等輕組分進入,形成混合性爆炸氣體的重質油品,掃線前需要進行氣相可燃氣體檢測。主要包括:糠醛料、白土料、催化輕料(含酮苯蠟下油、去蠟油)、糠醛抽出油、含糠醛抽出油的重油或油漿、石蠟。風險重質油品油罐見附件E。風險重質油品通掃線前必須進行氣相化驗分析。
2、 安全重質油品:即加工工藝安全,不可能出現輕組分進入,不可能形成混合性爆炸氣體的重質油品,掃線前不需要進行氣相可燃氣體檢測。主要包括:酮苯料、潤滑油基礎油、催化重料(二CT、渣油加氫渣油、一BT)、重油(三CT)、純催化油漿、石蠟(精製)、加氫裂化原料(三CL、B3)、加裂尾油。安全重質油品油罐見附件F。安全重質油品在裝置生產穩定,產品平穩合格外送時,原則上不做氣相分析。
部分安全重質油品在裝置開停工或出現大的波動等特殊工況下,可能變成風險重質油品,這時的安全油品我們可以稱為潛在風險油品。如蒸餾CT、BT、催化油漿等,在裝置開停工時可能帶入輕組分。所以這一時段,需要升級管理,按風險重質油品管理。
3、 對於部分油罐在不同時期收風險重質油品或安全重質油品。在收風險重質油品時,掃線前必須進行氣相化驗分析。在收風險重質油品後,切換收安全重質油品時,必須將罐內油品置換兩倍罐容量,並作氣相化驗分析合格後,再恢復安全重質油品操作方案。
4、 安全重質油品與風險重質油品和潛在風險油品兼收的油罐必須進行氣相分析。

7. 如何檢測油氣管道堵塞

聽:聽管線管壁是否有原油液體在管線中流動的聲音。
看:看管線溫度計溫度是否過低,看管線壓力表是否升高高出正常值。
摸:摸管線溫度是否過低。
查:檢查井口是否發生噴油,管線相接處是否漏油,單井量油是否量油液面上升

8. 油罐車油氣回收系統怎麼多長時間進行檢測一次

根據《加油站大氣污染物排放標准》(GB20952-2007 )要求,油氣回收系統每年至少進行1次油氣回收檢測。

油氣回收檢測項目包括:液阻檢測、密閉性檢測、氣液比檢測、外觀和功能檢測;
液阻檢測:以規定的氮氣流量向油氣回收管線內充人氮氣,模擬油氣通過油氣回收管線。用壓力表或同等裝置檢測氣體通過管線的液體阻力,了解管線內因各種原因對氣體產生阻力的程度,用來判斷是否影響油氣回收。
密閉性檢測:用氮氣對油氣回收系統加壓至500Pa,允許系統壓力衰減。檢測5min後的剩餘壓力值與國家標准規定的最小剩餘壓力限值進行比較,如果低於限值,表明系統泄漏程度超出允許范圍。
氣液比檢測:在加油槍的噴管處安裝-一個密合的適配器。該適配器與氣體流量計連接,氣流先通過氣體流量計,然後進入加油槍噴管上的油氣收集孔。所計量的氣體體積與加油機同時計量的汽油體積的比值稱為氣液比。通過氣液比的檢測,可以了解油氣回收系統的回收效果。
外觀和功能的檢測:是從整個系統方面進行的,主要檢測油氣回收改造後對加油槍的流量及其計量有沒有影響、電源電壓有沒有影響,改造油氣回收系統的單位有沒有資質。加油槍氣液比調整器是否正常,改造後的加油機製造單位有無製造許可證等。

9. 油氣管道的外徑檢測技術方法有哪些

人工測量、光電測徑儀自動測量都能測量油氣管道的外徑,光電測徑儀可自動化檢測,安裝於生產線上測量。

閱讀全文

與液體儲罐油氣線檢測方法相關的資料

熱點內容
沖鋒衣怎麼洗滌方法 瀏覽:239
婚前債務的計算方法 瀏覽:529
色環電阻與熱繼電器的連接方法 瀏覽:23
落枕了什麼方法最有效 瀏覽:299
雙頭眼影筆使用方法 瀏覽:685
鑒賞小說環境的方法有哪些 瀏覽:731
柳蒿芽兒的種植方法 瀏覽:763
金屬裝飾彩鋼板安裝方法 瀏覽:987
治療甲亢最好的方法是 瀏覽:630
香皂怎麼做簡單方法 瀏覽:669
電腦貼膠布的正確方法 瀏覽:489
吃蘆薈方法小視頻 瀏覽:790
304熱水器波紋管的連接方法 瀏覽:30
四年級加減法的簡便計算方法口訣 瀏覽:469
黃柏使用方法 瀏覽:293
led應急日光燈怎麼接線方法圖 瀏覽:223
快速系蝴蝶結方法圖解 瀏覽:183
涼風的鍛煉方法 瀏覽:610
tcl55f6支架安裝方法 瀏覽:275
常規鋁拉伸網板的安裝方法 瀏覽:195