① 樁基檢測檢測樁身質量的主要用什麼方法
樁基檢測的主要方法有靜載試驗、鑽芯法、低應變法、高應變法、聲波透射法等。
靜載試驗英文翻譯:Static Load Testing。是指在樁頂部逐級施加豎向壓力、豎向上拔力或水平推力,觀測樁頂部隨時間產生的沉降、上拔位移或水平位移,以確定相應的單樁豎向抗壓承載力、單樁豎向抗拔承載力或單樁水平承載力的試驗方法。
鑽芯法,是中國工程建設標准化協會批准出版的一本圖書。作者為中國建築科學研究院。
這種方法是利用專用鑽機,從結構混凝土中鑽取芯樣以檢測混凝土強度或觀察混凝土內部質量的方法。由於它對結構混凝土造成局部損傷,因此是一種半破損的現場檢測手段。
② 無損檢測的方法有多種,如超聲波檢測,射
聲波透射法以其鮮明的技術特點成為目前混凝土灌注樁(尤其是大直徑灌注樁)完整性檢測的重要手段,在工業與民用建築、水利電力、鐵路、公路和港口等工程建設的多個領域得到了廣泛應用。
聲波透射法的基本方法是:基樁成孔後,灌注混凝土之前,在樁內預埋若干根聲測管作為聲波發射和接收換能器的通道,在樁身混凝土灌注若干天後開始檢測,用聲波檢測儀沿樁的縱軸方向以一定的間距逐點檢測聲波穿過樁身各橫截面的聲學參數,然後對這些檢測數據進行處理、分析和判斷,確定樁身混凝土缺陷的位置、范圍、程度,從而推斷樁身混凝土的連續性、完整性和均勻性狀況,評定樁身完整性等級。
超聲儀的發展
模擬機:第一代
20世紀50年代出現了電子管聲波儀,主要是國外的
1964年同濟大學研製出我國第一台超聲儀。
70年代後期,國內一些單位又研製出一批晶體管分離元件的超聲儀。代表儀器:CTS一25型和SYC一2型超聲儀
數字機:第二代
1990年,天津建築儀器廠首先研製成功了我國第一台數字化的超聲儀。這種超聲儀受數字採集與傳輸速度等方面的限制,無法實時動態顯示波形。
從90年代中科院武漢岩土力學研究所生產的RSM-SY5聲波儀問世。
基樁超聲波自動測樁儀 第三代
在數字化超聲儀的基礎上為提高基樁透射法的工作效率和測試精度,增加了深度自動記錄的功能。
代表儀器:RSM-SY6 ZBL-520A RS-ST01(C)
基樁多跨孔超聲波自動循測儀 第四代
實現了多通道自發自收設計,可以一次提升同時完成四管六剖面的測試工作,又將檢測效率提高六倍,大幅降低了現場檢測強度。
代表儀器:RSM-SY7、RSM-SY7W RS-ST06D
基樁多跨孔超聲波自動循測儀 第五代
一次完成整樁6剖面平測及12剖面斜測並配備專業樁基三維CT成像軟體,可對測試結果生成各類三維動態圖,將混凝土超聲檢測儀推向了一個新的高度。
③ 樁基礎的檢測
成樁的質量檢驗有兩類基本方法,一類是靜載載荷試驗法,另一類為動測法。
1.靜載載荷試驗法
(1)試驗目的及方法
靜載載荷試驗的目的:模擬實際荷載情況,採用接近於樁的實際工作條件,通過靜載加壓,得出一系列關系曲線,確定單樁的極限承載力,綜合評定確定其允許承載力,作為設計依據,或對工程樁的承載力進行抽樣檢驗和評價。荷載試驗有多種,通常採用的是單樁豎向抗壓靜載試驗、單樁豎向抗拔靜載試驗和單樁水平靜載試驗。
(2)試驗要求
預制樁在樁身強度達到設計要求的前提下,對於砂類土,不應少於7d;對於粉土和粘性土,不應少於15d;對於淤泥或淤泥質土,不應少於25d,待樁身與土體的結合基本趨於穩定,才能進行試驗。灌注樁應在樁身混凝土強度達到設計等級的前提下,對砂類土不少於10d;對一般粘性土不少於20d;對淤泥或淤泥質土不少於30d,才能進行試驗。在同一條件下的試樁數量不宜少於總樁數的1%,且不應少於3根,工程總樁數在50根以內時不應少於2根。
2.動測法
動測法又稱動力無損檢測法,是檢測樁基承載力及樁身質量的一項新技術,作為靜載載荷試驗的補充。
(1)試驗方法
動測法是相對靜載載荷試驗法而言;它是對樁土體系進行適當的簡化處理,建立起數學-力學模型,藉助於現代電子技術與量測設備採集樁———土體系在給定的動荷載作用下所產生的振動參數,結合實際樁土條件進行計算,所得結果與相應的靜載試驗結果進行對比,在積累一定數量的動靜試驗對比結果的基礎上,找出兩者之間的某種相關關系,並以此作為標准來確定樁基承載力。
(2)與靜載載荷試驗比較
一般靜載載荷試驗可直觀地反映樁的承載力和混凝土的澆築質量,數據可靠。但試驗裝置復雜笨重,裝、卸、操作費工費時,成本高,測試數量有限,並且易破壞樁基。動測法試驗,儀器輕便靈活,檢測快速;單樁試驗時間僅為靜載試驗的1/50左右;數量多,不破壞樁基,相對也較准確,可進行普查;費用低,單樁測試費約為靜載載荷試驗的1/30左右,可節省靜載試驗錨樁、堆載、設備運輸、吊裝焊接等大量人力、物力。目前,國內用動測法的試樁工程數目,已佔工程總數的70%左右,試樁數約佔全部試樁數的90%,有效地填補了靜力試樁的不足。
(3)承載力檢驗
單樁承載力的動測方法種類較多,國內有代表性的方法有:動力參數法、錘擊貫入法、水電效應法、共振法、機械阻抗法、波動方程法等。其中常用的方法有動力參數法和錘擊貫入法。
(4)樁身質量檢測
在樁基動態無損檢測中,國內外廣泛使用的方法是應力波反射法,又稱低(小)應變法。原理是根據一維桿件彈性波反射理論(波動理論),採用錘擊振動力法檢測樁體的完整性,即以波在不同阻抗和不同約束條件下的傳播特性來判別樁身質量。
④ 樁基檢測方法
以應力波理論為基礎的檢測樁基質量的瞬態動測法和穩態振動法使用得較為廣泛。
10.1.2.1瞬態動測法(錘擊法/反射波法)
錘擊法是一種瞬態動測法,又稱反射波法。嵌入土中的樁基,相當於一個在阻尼介質中上端自由與下端彈性聯結的彈性桿。在樁基頂端應用錘擊的辦法施加一脈沖激振力F(t),樁將產生縱向振動而產生應力波。波沿樁身傳播至樁底部分能量反射回樁頂。若激振力足夠大,樁和樁周圍一定范圍內的土將作為一個體系產生自由振動。當樁體中存在波阻抗差異面對,則在這些面上將產生反射波、透射波和多次反射波等,其波的運動學和動力學特徵將發生變化。通過儀器接收這些波,可對樁基質量作出判斷,並推算出單樁承載力。
(1)基本原理及波形特徵
利用小手錘在樁頭施加一沖擊力F(t)被激發應力波在樁身內傳播,當遇到波阻抗界面時,將產生反射波,其反射系數為
環境與工程地球物理
式中:A1,A2為樁身截面積;ρ1,ρ2為介質密度;v1,v2為波速;R表示反射波與入射波的振幅比。這里是以廣義的波阻抗Aρv替代波阻抗ρv,它取決於波阻抗的差異和截面積的變化,反射波旅行時與平均速度及波阻抗界面的深度L有關。然後利用拾振器接收初始信號,樁身缺陷和樁底產生的反射波信號,通過儀器進行處理和分析,結合地質資料對樁的完整性和混凝土的質量作出評價。完整樁一般指樁身混凝土膠結良好,均勻連續,抗壓強度達到設計要求的樁,它只存在一個樁底波阻抗界面,由圖10.1可以看出,A1ρ1v1>A2ρ2v2,所以R<0,根據入射波和反射波速度量的相位關系為同向,體現在U(t)曲線上信號為同向疊加。如圖所示其波形特徵為一衰減振動曲線,衰減快,樁底反射波明顯,解析度高。由圖分析可得一次反射波旅行時為t,樁長為L,則平均速度為
環境與工程地球物理
t可以從時程曲線上讀得,若知vc或L中任一個,便可求解。若二者均未知時,常利用統計的方法或其他實驗的方法假定vc或根據施工記錄來假定L,以求得近似解。
圖10.1完好樁及實測波形
當樁間存在缺陷,如斷裂、夾層、空洞、縮徑或擴徑時,缺陷部位的應力波傳播速度v、密度ρ或截面積A與樁身完好部位都有所不同,即存在波阻抗差異。當應力波遇到波阻抗差異界面時,將會產生反射。若根據這一反射時間計算整樁的波速,則其結果將大於完整樁時的波速。樁身在L1處斷開,Z2相當於充氣或充泥的波阻抗,反射系數R<0,曲線中主要反映了L1處多次反射波,而樁底反射不清(圖10.2)。在L1處樁產生擴徑,應力波在L1處反射系數R>0,入射波和反射波為反向疊加,從時程曲線不難確定擴徑和樁底位置。
圖10.2缺陷樁及波形
眾所周知,樁基的波速與樁身混凝土的密實程度有關。緻密的樁身,其波的傳播速度大,鬆散的樁身,其波速小。
(2)樁基完整性的分析與判別
波形准則。缺陷樁波形特徵見表10.1。圖10.3為典型模型缺陷樁的波形,由圖可見,其特徵明顯接收到的反射波波形對稱圓滑,無畸變,且呈指數衰減形態,則認為是完整樁的特徵波形,反之,則認為是缺陷樁波形(圖10.4)。主要原因是當彈性波在樁體中傳播時遇到不均勻界面或介質斷裂等情況,會產生反射波、透射波、散射波等,因其各波到達時間、振幅和相位可能存在差異,互相疊加後,造成波形畸變。
圖10.3各種類型模型樁的典型波形曲線
表10.1缺陷樁波旅行時曲線特徵表
續表
圖10.4各種模型缺陷樁的波形曲線
速度准則。一般彈性波在樁體中傳播的速度越高,表明樁體混凝土強度越大,反之越低。此外,當樁體中存在離析等缺陷時,往往也造成波速降低。但也有波速高、樁基質量不一定良好的特殊現象。如縮徑樁或斷裂較小的樁,往往波速並不降低,可由波速確定樁的質量(表10.2)。
表10.2波速樁基質量關系表
頻譜准則。當彈性波在樁體中傳播時,其頻率隨著傳播距離的增大,將不斷被樁土介質吸收和衰減,當樁體中存在不均勻界面時,該界面產生的反射波的頻率一般比樁底反射波頻率高,並且其相位也有所變化。通過頻譜分析,可確定其樁體的完整性。一般情況下,若樁體質量完好,則其振幅譜中只有一個主峰值,譜線對稱穩定,與峰值對應的相位譜表現為一相位,如圖10.5所示。若樁體存在結構缺陷或離析層等,則其振幅譜一般表現為兩個以上的峰值,其相位譜中的相位分不同情況有所不同。
圖10.5完整波形及頻譜圖
(3)樁基承載力計算
摩擦樁指樁置於松軟地層。當用重錘豎向敲擊樁周土或樁頭而被激起振動後,將在垂向作自由振動,並通過樁側摩擦力及樁尖作用力帶動樁周部分土體參與振動,形成復雜的樁-土振動體系,其裝置如圖10.6所示。樁及樁側參振的土體,可視作單質點振動體系,根據質量—彈簧—阻尼模式振動理論,可推導出樁基的剛度計算式。再根據剛度與承載力之間的直接相關關系,可計算出樁基的承載力。
圖10.6頻率法檢測裝置示意圖
A.樁基固有頻率
設樁及樁周土為一個單自由度無阻尼彈性系統,根據虎克定律和牛頓第二定律可以導出樁-土體系的振動是按正弦規律變化,其振動周期和固有頻率為
環境與工程地球物理
式中:m為折算後的樁質量與參扳上體質量之和;k為樁-土體系的抗壓剛度。
B.單樁抗壓剛度
環境與工程地球物理
式中:λ為動力修正系數,可取λ=2.365;g為重力加速度為9.81m/s2;Q1為折算後參振樁重,Q1=樁總重/3=1/3·AL0r1;Q2為折算後參振土重, 為參振土擴散半徑,即r0= ;A為樁的橫截面積(m2);L0為樁的全長(m);L為樁的入土深度(m);r1為樁的混凝土容重(kN/m3);r2為樁的下段L/3范圍內土的容重(kN/m3);φ為樁的內摩擦角;d為樁的直徑。
C.單樁臨界荷載
臨界荷載指與按靜荷載試驗測定的P-S曲線上與拐點對應的荷載。根據動靜對比關系,可得臨界荷載為
環境與工程地球物理
式中:μ為靜載與動測之間的比例系數。
它是選取不同地質條件下各種類型的樁基,進行動靜對比試驗,通過數理統計分析求得的回歸系數。
D.單樁允許承載力(Pa)
對粗長樁,特別是當樁尖以下土質遠較樁側土強時,則
環境與工程地球物理
對中小樁,特別是當樁尖以下土質較樁側土弱時,則
環境與工程地球物理
式中:Pa單位為kN;k為安全系數,一般取2.0。10.1.2.2穩態振動法(機械阻抗法)
(1)方法原理
該方法又稱為穩態正弦掃頻激振法。即對樁頂施加幅值不變的變頻激振力,利用速度導納隨激振頻率變化的特徵(圖10.7)來檢測樁基質量並計算承載力。
圖10.7樁基的導納反應曲線
A.速度導納
環境與工程地球物理
式中:F(f)為激振力;V(f)為利用檢波器在樁頂上可接收到其振動信號。
B.樁身砼的波速vc
由波動理論可知:
環境與工程地球物理
式中:Δf是導納曲線上兩諧振峰之間的頻率差;L為樁長。
應用時根據已知樁長L和測得的Δf計算vc,正常砼的波速vc=3300~4500m/s,若vc小於此范圍,說明砼的質量較差。另外,也可利用Δf和正常vc值反算樁長Lm,質量好的樁L=Lm,若Lm<L則反映了在深度處有質量問題。
C.特徵導納
所謂特徵導納是指導納頻譜曲線上振幅的幾何平均值,利用實測的特徵導納與理論計算的特徵導納作比較,可判別樁基的質量。如果實測值接近理論計算值說明樁基的質量及完整性較好。理論計算的特徵導納N和實測特徵導納Nm為
環境與工程地球物理
式中:ρc是樁基質量密度;Ac為樁的截面積;ρmax和Qmin是速度導納的最大值與最小值。
若Nm≈N為正常樁,若Nm>N,說明ρc或vc變小(存在局部混凝土鬆散)或Ac變小(局部有縮徑)。若Nm隨頻率增高而變小,表示樁徑上大下小,也為縮徑樁。若Nm<N,一般為擴徑樁。
D.動抗壓剛度
當樁在低頻(低於樁的固有頻率)激振時,位移較小,樁的振動可視為剛體運動或平動,此時導納曲線接近於直線,其斜率的倒數為樁的動抗壓剛度,即
環境與工程地球物理
式中:|U/F|和fm為導納曲線的低頻直線段上任一點M的導納值和頻率。
動抗壓剛度的意義及用處可歸納為:KD反映樁周土對樁柱的彈簧支承剛度,KD值的大小與樁的承載力有一定聯系;KD值與靜剛度KS建立統計關系,可以評價單樁承載力,並可估計在工作荷載下樁的彈性位移。
在實際工作中,通常不易獲得理想的曲線,在測得的諧振峰中常摻雜一些假峰,為區別真假峰,尚須測定隨頻率變化的速度導納相位變化曲線,即導納譜相頻曲線。相頻曲線上的零相位點所對應的導納譜幅頻曲線上的波峰,即為有效的諧振峰。
(2)檢測系統
樁的穩態激振測試系統中超低頻信號發生器輸出頻率5~1500Hz的自動掃描正弦信號給功率放大器,由它推動樁頂中心的電磁激振器向樁施加幅值不變的動態激振力,即激振力在激振頻率變化時,保持恆定,使樁產生穩態振動。
(3)模擬分析
為檢查機械阻抗法無損檢驗樁基質量的准確性,專門在某地製作了三根直徑1.8m、長約20m的原狀工程試樁。施工時預先在試樁內設置了各種缺陷,以供試驗測試後進行對比。
測試的各種導納曲線如圖10.8(a),(b),(c)所示。3#樁的導納曲線接近調制波形,幅度較大的調制波表示距樁頂8m處有反射,由於波動尚能傳到樁底,調制波的「載頻」是樁底反射,幾個波峰間的Δf基本一致,由此可計算出波速v0=3909m/s。由於3#樁Kd值大於預期值,而Nm小於理論值,可以判定距樁頂8m處有斷面擴大現象。
1#樁和2#樁由於其Lm較製作長度短,Kd值小於預期位,Nm大於預期值,是明顯的缺陷樁。其中2#樁無缺陷以下的反射,計算認為在6.11m處全斷裂,1#樁有缺陷以下的較小反射,計算認為在距樁頂3.75m處有離析,9.5m處有全斷裂。
圖10.8工程試樁及導納反應曲線
⑤ 樁基無損檢測的方法有哪些
1、建設單位應嚴格社會檢測機構准入,加強對樁基檢測單位檢測質量的管理和監督檢查。
2、檢測單位應在接到經監理確認的橋梁基樁檢測前情況記錄表後,開始樁檢工作。檢測工作應由監理人員見證檢測。
3、檢測單位應嚴格按照JTG/T F81-01-2004《公路工程基樁動測技術規程》的規定對聲時值和波幅值出現異常的部位應採用水平加密、等差同步或扇形檢測等方法進行細測,結合波形分析確定樁身混凝土缺陷位置及其嚴重程度,並保存細測數據。
4、樁檢完成後檢測單位應當場簽發現場檢測臨時報告,並經旁站監理及施工人員簽收。並應於7d之內發送正式報告,報告接收時應建立簽字手續。
5、施工單位對樁檢結果有異議,需第三方檢測單位復檢時,應事先告知原檢測結果,復測時應通知監理、施工、原檢測單位人員都到場,共同參與。
⑥ 樁基工程的檢測有哪些主要內容
檢測內容:
(1)各類樁、墩、樁牆豎向或橫向承載力檢測,包括單樁及群樁承載力檢測;
(2)墩底持力層承載力及變形性狀的檢測;
(3)各類樁、墩及樁牆結構完整性檢測;
(4)考慮樁土共同作用或復合地基中樁土荷載分擔比的檢測,樁體及土體應力-應變的檢測;
(5)施工中對環境影響(如震動、噪音、土體變形)的檢測;
(6)特殊條件下或事故處理中的其它檢測。
根據《建築樁基檢測技術規范》(JGJ106-2014),樁基檢測的主要方法有靜載試驗、鑽芯法、低應變法、高應變法、聲波透射法等幾種。
1、靜載試驗法是公認的檢測基樁豎向抗壓承載力最直接、最可靠的試驗方法。但在工程實踐中發現,基準樁的問題有時會被檢測人員所忽視,容易出現基準樁打入深度不足,試驗過程產生位移的問題。
2、與其他完整性檢測方法相比,聲波透射法能夠進行全面、細致的檢測,且基本上無其他限制條件。但由於存在漫射、透射、反射,對檢測結果會造成影響。涌現的多通道超聲波檢測儀,使得檢測效率成倍的提高。
該檢測方法是獲得一組(剖面)聲學數據後,對數據進行分析,剔除異常值後計算平均值(聲速和波幅),然後再將每個測點的數據與平均值進行比較,超過一定范圍(如波幅下降6dB)即認為該點存在缺陷。該檢測方法同樣可應用於地下連續牆、水利壩體的檢測。
⑦ 樁基動態無損檢測法
隨著高層建築、大型工程的蓬勃興起,在地基工程中,樁基礎被廣泛地使用。樁基具有防震、抗震、承載力高、沉降量小且均勻等特點。由於樁基是建築物的持力基礎,樁基的質量對建築物的穩定性影響很大,在混凝土灌注施工過程中,常常會造成部分樁出現斷裂、縮頸、擴頸、混凝土離析和蜂窩等現象,如不及時發現和處理將是建築物的長期隱患。
傳統檢測樁基完整是採用鑽探取心法測定樁基承載力,採用靜載荷壓樁試驗。這些方法雖直觀,但均存在設備笨重、成本高、工期長、檢測數量少、隨機性大等缺陷。而且,1%的驗樁率遠遠不能評價全部樁基質量。
動態無損檢測法具有省時、省力、經濟、簡便、無損、可靠等優點。
一、樁的動測技術的發展與應用近況
1.樁的動測技術在國外的發展和應用
近十年來,國外在樁動測技術方面有兩件事值得我們關註:一是對國外廣泛應用的波動方程法測樁的承載力進行了考核;二是國外出現了另一種新的動測樁承載力的方法,叫做靜動法,並且很快得到了認可和應用。
1992年在荷蘭海牙召開的第四屆國際應力波理論在樁基中應用的會議期間,對國外廣泛應用測樁承載力的波動方程法進行了考試,共有國際上有名的10家單位參加。試樁長為11.5m,截面為0.25 m×0.25 m,參加測試單位絕大多數都採用CAPWAP的程序和PDA儀器,但是測試結果很不理想,除了一家的結果(圖2-4-1曲線B)與靜載試驗結果(圖2-4-1曲線A)較接近外,其他結果均與靜載試驗結果相差甚遠,其中最低破壞荷載為90kN,最高為510kN,而靜載試驗的破壞荷載為340kN。
由此可見,即使採用相同的儀器、相同的程序、相同的方法,由於測試人員的素質和經驗不同,也會得到不同的承載力結果,這是值得我們引以為戒的。
為了搞清CAPWAP法和PDA儀器的實際應用效果,美國聯邦高速公路管理局(FHWA)委託麻省理工學院的佩柯斯基(S.G.Paikowsky)教授進行調查,後者搜集了206根樁的動靜對比試驗,結果如圖2-4-2所示。該圖的橫坐標為貫入1英寸所需的錘擊數;縱坐標表示靜荷載試驗結果與用CAPWAP實測結果之比值。由圖示結果來看,多數情況下CAPWAP所提供的樁承載力比靜載的結果要小,但也有偏大的情況。在分析樁打入性能和樁承載力時,國外採用的軟體有多種,但較為廣泛應用的除CAPWAP程序外,還有WEAP程序和TNOWAVE程序等,但其存在的問題大致與CAPWAP程序相同。
圖2-4-1 測樁承載力對比結果圖
圖2-4-2 動靜對比試驗結果圖
2.樁的動測技術在國內的發展和應用
樁的動測技術在我國的推廣和應用,經歷了一段不平凡而且頗有特色的道路。1989年第一次在北京召開的「全國樁基動測學術交流會」,開始將樁的動測技術推廣應用於工程實踐。1995年10月正式頒布了我國行業標准《基樁低應變動力檢測規程》(JGJ/T93-95),使我國小應變動測法進入了實用推廣階段,我國的「基樁高應變動力檢測規程」(JGJ106-97)也於1997年正式頒布。總之,動力測樁的技術在我國的工程建設中已經得到愈來愈廣泛的應用。
由於動測技術的發展,許多有關樁動測的學術爭議也隨之消失。例如,用小應變激振方法能否測定樁的完整性的問題,隨著大量的工程實踐已經得到了解決。目前,全國幾乎所有動測樁單位均採用小應變激振方法來檢驗樁的完整性。至於用小應變激振方法來檢測樁的承載力問題,雖然有些人尚不能接受,但全國已有90多家單位通過了國家建築工程質量監督檢驗中心組織的考試,獲得了建設部頒發的資質證書,允許在樁基工程中應用。盡管有些單位在掌握和應用這些新技術方面還不盡人意,但至少說明了這些技術所具有的優越性和強大的生命力。
此外,我國許多學者和研究人員近年來在樁的動測方面也進行了大量研究開發工作,有些單位還研製了新的儀器和設備,已經在樁基工程中得到應用的幾種動測方法,現在也在進一步改進中。
盡管我國在動測樁的應用和研究開發方面取得了很大的成績,並且在某些方面結合我國國情還有所創新,但也要看到我們在實踐中還存在著許多問題,它們是:①有些方法實施效果不盡人意,需要改進;②某些測試儀器質量不高,不能滿足測試要求;③有的測試單位因經濟利益驅動,接受了某種動測方法本應限制使用的測試任務;④測試人員缺乏應有的經驗或素質不高,造成測試結果不佳或誤判。總之,我們應清醒地看到,樁的動測新技術還將不斷地發展,各種動測方法必須以傳統的靜載試驗作為依託,而不是相互排斥。
二、樁基的類型
目前,我國採用的樁基主要有沉管灌注樁、鑽孔灌注樁、鑽擴灌注樁、沖孔灌注樁、挖孔灌注樁、爆擴灌注樁、鋼筋混凝土預制樁、鋼樁、旋噴樁、振動碎石樁、振動擠密砂樁等類型。
樁基按受力分類可分為摩擦樁、端承樁、擴底墩型樁。摩擦樁以樁周土的摩擦力為主,樁尖支承力為輔。端承樁的樁底坐落在堅硬的基岩上,它以樁底基岩的反向支承力為主,以樁周摩擦力為輔。擴底墩型樁要求擴大樁底部的接觸面積提高支承力。
三、樁基無損檢測方法
以應力波理論為基礎的檢測樁基質量的瞬態動測法和穩態振動法使用得最廣泛。
1.瞬態動測法(錘擊法)
嵌入土中的樁基,相當於一個在阻尼介質中上端自由與下端彈性連接的彈性桿,如圖2-4-3。在樁基頂端應用錘擊的辦法施加一脈沖激振力f(t),樁將產生縱向振動而產生應力波。波沿樁身傳播至樁底部分能量反射回樁頂。若激振力足夠大,樁和樁周圍一定范圍內的土將作為一個體系產生自由振動。通過儀器接收這些波,可對樁基質量作出判斷,並推算出單樁承載力。
圖2-4-3 一維彈性桿模型
(1)反射波法
a.基本原理及波形特徵
反射波法的現場測試工作如圖2-4-4所示。利用小手錘在樁頭施加一沖擊力f(t)被激發應力波在樁身內傳播,當遇到波阻抗界面時,將產生反射波,如圖2-4-5所示。
其反射系數為
環境地球物理教程
式中:A1、A2為樁身截面積;ρ1、ρ2為介質密度;v1、v2為波速;R表示反射波與入射波的振幅比。這里是以廣義的波阻抗Aρv替代波阻抗ρv,它取決於波阻抗的差異和截面積的變化,反射波旅行時與平均速度及波阻抗界面的深度l有關。然後利用拾震器接收初始信號,樁身缺陷和樁底產生的反射波信號,通過儀器進行處理和分析,結合地質資料對樁的完整性和混凝土的質量作出評價。
b.樁基完整性的分析與判別
完整樁 完整樁一般指樁身混凝土膠結良好,均勻連續,抗壓強度達到設計要求的樁,它只存在一個樁底波阻抗界面,由圖2-4-6可以看出,A1ρ1v1>A2ρ2v2,所以R<0,根據入射波和反射波速度量的相位關系為同向,體現在U(t)曲線上信號為同向疊加,如圖2-4-7所示其波形特徵為一衰減振動曲線,衰減快,樁底反射波明顯,解析度高。由圖分析可得一次反射波旅行時為t,樁長為l,則平均速度為
圖2-4-4 小擾動應變力波反射法示意圖
圖2-4-5 應變波的反射與透射
環境地球物理教程
t可以從時程曲線上讀得,若知vc或l中任一個,便可求解。若二者均未知時,常利用統計的方法或其他實驗的方法假定vc或根據施工記錄來假定l,以求得近似解。
缺陷樁 當樁間存在缺陷,如斷裂、夾層、空洞、縮頸或擴頸時,缺陷部位的應力波傳播速度v、密度ρ或截面積A與樁身完好部位都有所不同,即存在波阻抗差異。當應力波遇到波阻抗差異界面時,將會產生反射。若根據這一反射時間計算整樁的波速,則其結果將大於完整樁時的波速。如圖2-4-8 示,樁身在l1處斷開,Z2相當於充氣或充泥的波阻抗,反射系數,R<0,曲線中主要反映了l1處多次反射波,而樁底反射不清。圖2-4-9 表示在l1處樁產生擴頸,應力波在l1處反射系數R>0,入射波和反射波為反向疊加,從時程曲線不難確定擴頸和樁底位置。
圖2-4-6 樁身完好
圖2-4-7 完好樁實測波形
圖2-4-8
圖2-4-9
根據樁彈性波速度評價樁的質量 眾所周知,樁基的波速與樁身混凝土的密實程度有關。緻密的樁身,其波的傳播速度則大,鬆散的樁身,其波速則小。
對動測樁身質量分類評價,是根據不同工程和不同類型的樁基檢測和靜荷載資料對比,可從兩個方向分類評價——樁身完整性和混凝土質量:①樁身完整性包括完好樁、微縮擴頸、嚴重縮頸、大面積離析、斷樁等可以根據動測波型特徵判斷;②混凝土質量則可以根據動測樁的波速進行評價。對灌注樁採用下表2-4-1所列波速進行分類判別。
表2-4-1
(2)樁基承載力推算原理
摩擦樁承載力的計算原理
摩擦樁指樁置於松軟地層。當用重錘豎向敲擊樁周土或樁頭而被激起振動後,將在垂向作自由振動,並通過樁側摩擦力及樁尖作用力帶動樁周部分土體參予振動,形成復雜的樁—土振動體系,其裝置見圖2-4-10所示。樁及樁側參振的土體,可視作單質點振動體系,根據質量—彈簧—阻尼模式振動理論,可推導出樁基的剛度計算式。再根據剛度與承載力之間的直接相關關系,可計算出樁基的承載力。
圖2-4-10 頻率法檢測裝置示意圖
圖2-4-11 樁—土體系示意圖
計算單樁抗壓剛度 在樁—土體系振動的曲線上求出振動周期 Tz,計算出自振頻率fz,如圖2-4-11所示。根據單自由度的質量—彈簧體系,其質量和剛度同頻率關系:ω,單樁抗壓剛度為
環境地球物理教程
式中:λ是動力修正系數,可取λ=2.365;g是重力加速度為9.81(m/s2)。
環境地球物理教程
式中:(梨形土體擴散半徑);A———樁的橫截面積(m2);L0———樁的全長(m);L———樁的入土深度(m);r1———樁的砼容重(kN/m3);r2及φ———分別為樁的下段范圍內,土的容重(kN/m3)及內摩擦角。
計算單樁臨界荷載 臨界荷載指與按靜荷載試驗測定的P—S曲線上與拐點對應的荷載。根據動靜對比關系,可得臨界荷載:
環境地球物理教程
式中μ為靜載與動測之間的比例系數。它是選取不同地質條件下各種類型的樁基,進行動靜對比試驗,通過數理統計分析求得的回歸系數。
計算單樁允許承載力(Pa)對粗長樁,特別是當樁尖以下土質遠較樁側土強時,則
環境地球物理教程
對中小樁,特別是當樁尖以下土質較樁側土弱時,則
環境地球物理教程
式中k為安全系數,一般取2.0。
2.穩態振動法(機械阻抗法)
(1)方法原理
將樁視為一維彈性體,當其受縱向穩態振動時,給定不同的邊界條件,既可求得樁的動力反映,該反映包含了材料的有關信息。研究樁的動力反映曲線可判定樁的質量和樁基的承載力。
(2)測試系統
樁的穩態激振測試系統如圖2-4-13所示。超低頻信號發生器輸出頻率5Hz~1500Hz的自動掃描正弦信號給功率放大器,由它推動樁頂中心的電磁激振器向樁施加幅值不變的動態激振力(即:激振力在激振頻率變化時,保持恆定,使樁產生穩態振動)。在樁頂和激振器之間有力感測器,它可知激振力的大小,樁頂拾振器接收樁的振動信號,經測振放大器與IBMPC/XT機相連,可進行計算並列印出成果圖件。
圖2-4-12 樁基的導納反應曲線
(3)測量信息的利用及判別樁質量的依據如果使用一定能量在樁頂進行激振,其激振力為F(ω),則樁身內產生應力波,並沿樁身向下傳播,在任何一個密度不均勻的界面上則有一部分能量反射回到樁頂,這時在樁頂用拾震器可直接測量到樁基系統的速度反應U(ω),則速度導納為:
環境地球物理教程
它決定於樁基系統的質量,阻尼系數和樁基的抗壓剛度。以頻率f為橫坐標,以速度導納絕對值為縱坐標的導納反應曲線,如圖2 4 12 所示。樁—土體系不同,導納反應曲線也有差別,速度導納曲線是判別樁基質量的重要依據。
a.樁身砼的波速vc
由波動理論可知:
環境地球物理教程
式中:Δf是導納曲線上兩諧振峰之間的頻率差;L為樁長。
應用時根據已知樁長L和測得的Δf計算vc,正常砼的波速vc=3300~4500m/s,若vc小於此范圍,說明砼的質量較差。另外,也可利用Δf和正常vc值反算樁長Lm,質量好的樁L=Lm,若Lm<L則反映了在深度處有質量問題。
圖2-4-13 穩態激振測試系統
b.特徵導納
所謂特徵導納是指導納頻譜曲線上振幅的幾何平均值,還可以求出特徵導納,利用實測的特徵導納與理論計算的特徵導納作比較,可判別樁基的質量。如果實測值接近理論計算值說明樁基的質量及完整性較好。
理論計算的特徵導納公式為
環境地球物理教程
式中:ρc是樁基質量密度;Ac為樁的截面積。
實測特徵導納表示為
環境地球物理教程
式中:ρmax和Qmin是速度導納的最大值與最小值,由圖2-4-13中讀出。
若Nm≈N為正常樁,若Nm>N,說明ρc或vc變小(存在局部混凝土鬆散)或Ac變小(局部有縮頸)。若Nm隨頻率增高而變小,表示樁徑上大下小,也為縮頸樁。若Nm<N,一般為擴頸樁。
c.動抗壓剛度
當樁在低頻(低於樁的固有頻率)激振時,位移較小,樁的振動可視為剛體運動或平動,此時導納曲線接近於直線,其斜率的倒數為樁的動抗壓剛度,即
環境地球物理教程
式中|U/F|和fm為導納曲線的低頻直線段上任一點M的導納值和頻率。
動抗壓剛度的意義及用處可歸納為:KD反映樁周土對樁柱的彈簧支承剛度,KD值的大小與樁的承載力有一定聯系;KD值與靜剛度KS建立統計關系,可以評價單樁承載力,並可估計在工作荷載下樁的彈性位移。
在實際工作中,通常不易獲得理想的曲線,在測得的諧振峰中常摻雜一些假峰,為區別真假峰,尚須測定隨頻率變化的速度導納相位變化曲線,即導納譜相頻曲線。相頻曲線上的零相位點所對應的導納譜幅頻曲線上的波峰,即為有效的諧振峰。
(4)不同類型模型樁的導納譜曲線特徵
a.完整樁
幅頻曲線的低頻段與理論導納譜曲線相近似,利用相頻曲線的零相位點可准確地找出諧振峰,諧振幅間隔均勻、整齊,平均頻差為1450Hz,按公式vc=2×L×Δf,算得波速4350m/s,屬完整正常波速。如圖2-4-14所示。
b.全斷樁
圖2-4-14 完整模型樁導納譜曲線
圖2-4-15是全斷裂模型的導納譜曲線,特點是反映全斷面的諧振峰明顯,在相頻曲線上有對應的零相位點,這是因為應力波在樁身遇到全斷面時,絕大部分能量被反射到樁頂,樁底反射效應不明顯。根據所得頻差可計算斷裂位置。測得Δf=207.5Hz,算得樁身斷裂深度I=8.6~9.6m,也與實際斷裂位置9.0m吻合。
圖2-4-15 斷裂模型樁導納譜曲線
(5)樁基完整性分析與判別
1)通過相頻曲線上的零相位點,在幅頻曲線上確定諧振峰之間的頻差Δf。對於完整樁,幅頻曲線上的各峰分布大致均勻、整齊,用Δf計算的樁身內應力波傳播的速度v′c接近於正常混凝土的波速vc。如果計算的樁身波速v′c小於正常值的下限,表明樁身混凝土質量較差。如果v′c大於正常值的上限,說明樁身中有明顯的異常存在,如果樁身出現斷裂,縮頸或擴頸,應力波在這些異常處的反射效應,使測得頻差增大。如果諧振峰很多,且有類似調制波的波形,即所謂大峰之間夾小峰時,通常,小峰之間的頻差反映樁底效應,由式v′c=2L×Δf計算的值接近正常值,大峰之間的頻差則反映樁身異常處的反射效應。
2)異常的位置。按公式L=×Δf計算,此時vc可選用已判明為完整樁的計算值,或取多根完整樁的平均值,取屬於異常效應的頻差。
總之,判別樁基質量的好壞要綜合利用導納譜的特徵,樁基內波的傳播速度,諧振峰之間的頻差,樁基的動抗壓剛度和特徵導納值等因素進行分析,有可能對樁的砼質量、斷樁、縮頸或擴頸位置及大小作出判斷,可以計算樁的承載力。
3.超聲波檢測法
(1)原理與適用條件
混凝土亦名砼,國內外有關砼聲學特徵的研究成果為工程界利用超聲波檢測灌注樁的質量展示了良好的前景。首先是利用砼的聲參數在樁中的分布,推斷異常的位置和幾何形態等。另外,在一定的條件下,還可以建立砼的縱波速度vP與其單軸抗壓強度Pz之間的關系曲線。但是,砼的不同齡期、不同水灰比、鋼筋配比、骨料的品種、粒徑等因素都能對聲速產生不同程度的影響。有時,砼的強度一樣,由於骨料的品種不同、用量不同、粒徑不同造成縱波速度也不同。特別是不同工區之間原料和工藝上的差異,很難給出統一的vP—Pz關系曲線。比較穩妥的辦法是與靜載荷壓樁試驗結合起來進行,通過對少數樁基的聲波探測和力學試驗,求得vP—Pz關系曲線,以此來作為該工區聲波法測砼的依據。這里主要介紹利用實測樁中聲參數的分布來解析異常位置和幾何形態的方法。
(2)設備與檢測方法
設備包括發射探頭、接收探頭和聲波測量儀。對探頭的要求是:發射功率較大,接收靈敏度較高,指向角合適,有較寬的頻帶,諧振頻率為20~50kHz。其中,發射探頭的機械品質因數要高,以便獲得較高的發射效率和較高的信噪比;接收探頭的機械品質因素則希望低一些,這樣在換能過程中不致引起波形嚴重畸變,並且有較寬的接收頻帶。使用攜帶型計算機可直接進行記錄、計算和判斷異常,檢測方法如下。
1)在灌注混凝土之前,隨鋼筋籠下二至四根鍍鋅鐵導管(砼樁直徑小於800mm時,下二根;大於800mm時,下三根或四根)。分別固定在鋼筋骨架上,位置如圖2-4-16所示,上圖為俯視圖。要求樁體內的兩根鐵導管必須平行,距離誤差小於5%。導管的底部封死,接頭處內壁保持光滑,上部用木塞封住,防止導管內掉入雜物。
2)檢測時,通常是使用岩石聲波參數測定儀,按單發雙收的工作方式測砼樁的聲參數,即在一根導管內下一個發射探頭,在另一根導管內下一對接收探頭,管中注滿水作耦合介質。整個檢測的方框圖如圖2-4-17所示。全面粗測是將待測樁先按較稀的點距H,例如50~80cm,整體測一遍。主要使用參數為聲速和首波振幅,檢測過程中應注意等振幅讀聲波走時t,等增益讀首波振幅。在異常附近細測時,點距可減小到10~15cm。
(3)數據處理與解釋方法
a.異常的判斷標准
制定異常的判斷標準是聲波檢測法的重要一環,通常有兩種做法。一是根據實測資料(包括砼小樣的資料)制定判斷異常的標准;二是根據概率統計原理制定判斷異常的標准。後一種做法比較科學,但在工程實踐中發現,如不剔除或少剔除可疑數據都會漏掉異常點。劉渝等人提出的一種做法是在處理數據時,先統計數據的頻率分布,然後參考已有的聲波資料,剔除不合理的數據,人為地使參加統計的數據為正態分布,並依據概率統計的原理制定劃分異常界限的臨界值,低於此值的數據即為「異常」,可判斷該處內部有缺陷。
圖2-4-16 砼樁檢測示意圖
圖2-4-17 砼樁檢測方框圖
為防止兩根預埋管之間的距離變化引起假異常,引入距離判據,其表達式為
環境地球物理教程
圖2-4-18為判斷異常的電算程序框圖。框圖中的N為測點數,P為某點聲速出現的概率,若N·P<1,則說明這個測點的聲速(通常為低速)在正常情況下不應出現,其聲波傳播路徑上可能有缺陷。參數Ka由單點聲速vpi、所有測點聲速平均值以及速度均方差σ等參數求出,也可由概率P查正態分布概率表求出。
b.缺陷的詳查方法
在檢測現場,用計算機處理數據,劃分出異常帶(或點)之後,可在包括異常帶的一定深度內加密點距細測,使用方法主要有交會法和視速度——代數重構法。
交會法是將置於測量導管中的發射和接收換能器以較小的點距,如10~20cm,按「水平同步」方式及「斜同步」方式依次對異常帶測量。處理資料時,將每條射線的聲速平均值(射線行程除以首波到時)或者波振幅比標注在聲波射線圖上,如圖2-4-19所示,用來評價缺陷的性質和存在的大致范圍。
由該圖可以看出,在標高為-5.2m附近,有一低速異常,因為穿過這一區間的三條射線速度(3.67,3.4,3.83)均較低,該處縱波速度vP,應取三條射線速度的算術平均值3.6(km/s)。這種作圖交會法簡單直觀,但卻有一定的局限性,因為這些射線在樁內並不都是近似直線傳播的,有時也會由於繞射、折射干擾而造成較大的解釋誤差。
關於視速度———代數重構法,其實就是層析成像技術中的透射層析方法,最早源於醫學中的 X射線層析成像技術。這里給出兩個圖示計算結果。圖2-4-20 的①是為使用代數重構法而將聲波透視空間離散化,圖中分成十八個網格,虛線表示聲波射線的路徑;②測定對象是一根直徑為400 mm,長5 m且在3.2 m深度上充填有爐灰渣的砼樁,圖中所示為對2.8 m至3.8 m一段用視速度———代數重構法細測的解釋成果。由圖中的等值線很容易看出爐灰渣的含量及分布情況;③是另一砼樁的視速度———代數重構法細測的解釋結果。在-2.4 m處有一水平層狀異常,應推斷為斷柱(已知是爐灰渣)。
圖2-4-18 電算程序框圖
圖2-4-19 聲波射線圖
圖2-4-20 透射層析方法示意圖
c.基樁質量的總體評價
評價混凝土灌注樁質量和力學性質的參數有:縱波平均速度v-P、動彈性模量Ed、准抗壓強度Pm以及聲速vpi的離散系數和出現頻率等。表2-4-2 為劉渝等根據工程實踐,參考技術文獻及規范要求,提出的混凝土質量等級的聲參量指標,可供參考。
使用岩石聲波參數測定儀器在現場只能取得縱波速度、首波幅值和聲波信號波形。
計算動彈性模量還需要橫波速度和密度等參數,這兩個參數可通過對砼小樣的測試取得。准抗壓強度Pm可以用下述兩種方法來求取,一是根據縱波速度在vP-Pz曲線上找對應的Pz值作為Pm;二是通過公式(2.4.15)計算:
環境地球物理教程
式中:K為調整系統,根據基樁有無缺陷,缺陷的性質及大小、數據的觀測質量等因素確定;vPr為砼小樣的縱波速度;Pr為砼小樣的單軸抗壓強度。
利用聲波檢測法的粗測、細測和砼小樣的測試參數,參考表2-4-3的標准,可對混凝土基樁質量作出總體評價。
表2-4-2 混凝土質量等級的聲參量指標
表2-4-3
⑧ 樁基檢測的方法有幾種
可以參考JGJ 106-2014 建築樁基檢測技術規范,裡面樁基檢測方法包括:1、單樁豎向抗拔靜載試驗;2、單樁豎向抗壓靜載試驗;3、單樁水平豎向靜載試驗;4、鑽芯法;5、低應變法;6、高應變法;7、聲波透析法;其中,常規的檢測基樁完整性檢測方式有低應變、超聲波、鑽芯三種,樁身承載力的檢測方式有靜載、高應變法二種。我們公司使用的檢測設備是上海岩聯的低應變及超聲波檢測儀。希望對你能有幫助。
⑨ 混凝土灌注樁需要做什麼檢測基本方法是什麼
需要用超聲波成孔成槽質量檢測儀檢測 孔深、孔徑、垂直度。基本方法是:超聲波測距原理
⑩ 常用樁基檢測的檢測方法有哪些分別能檢測哪些指標
樁基檢測工作是確保樁基工程施工質量至關重要的一個環節,檢測工作質量、測試方法及結論直接關繫到建築物的安全和正常使用。
常用的樁基檢測主要方法有:靜載試驗。鑽芯法、低應變法、高應變法、聲波透射法等。
靜載實驗在確定單樁極限承載力方面,是目前最為准確、可靠的檢驗方法,下面視頻針對靜載試驗過程做了詳細的介紹。https://v.qq.com/x/page/e03989ic1ao.html
第一步:選點試驗
現場選試驗點,原則上每單位工程不應少於3點,1000m2以上工程,每100m2 至少應有1點,3000m2以上工程,每300m2至少應有1點。由委託單位及監理單位共同確定。將樁頭處理干凈且打毛至完整的水平截面,使樁頂(高於或低於自然地面)與自然地面基本標高一致為宜。
第二步:安裝千斤頂
被檢測基樁,周圍鋪設120mm厚的中砂墊層,上方正放1.5m2的承壓板,加墊板,固定油壓千斤頂。最大載入時的極限壓力均未超過千斤頂、油泵、油管額定工作壓力的80%。架設壓重平台反力裝置,設置鋼架承重平台,上堆重物,可堆放沙袋,混泥土塊等。
第三步:安裝觀測系統
安裝全自動電動油泵,壓力感測器並聯在電動油泵供油管口處。2個位移感測器對稱安裝在承壓板兩側。接收器垂直承壓板,連接到靜力載荷測試儀。
第四步:採集數據
詳細步驟見視頻介紹:https://v.qq.com/x/page/e03989ic1ao.html