導航:首頁 > 研究方法 > 試驗數據處理分析方法

試驗數據處理分析方法

發布時間:2022-05-12 03:44:06

① 常用的數據分析方法哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

② 物理實驗數據處理的方法有哪些

實驗數據的處理方法

實驗結果的表示,首先取決於實驗的物理模式,通過被測量之間的相互關系,考慮實驗結果的表示方法。常見的實驗結果的表示方法是有圖解法和方程表示法。在處理數據時可根據需要和方便選擇任何一種方法表示實驗的最後結果。

(1)實驗結果的圖形表示法。把實驗結果用函數圖形表示出來,在實驗工作中也有普遍的實用價值。它有明顯的直觀性,能清楚的反映出實驗過程中變數之間的變化進程和連續變化的趨勢。精確地描制圖線,在具體數學關系式為未知的情況下還可進行圖解,並可藉助圖形來選擇經驗公式的數學模型。因此用圖形來表示實驗的結果是每個中學生必須掌握的。

圖解法主要問題是擬合面線,一般可分五步來進行。

①整理數據,即取合理的有效數字表示測得值,剔除可疑數據,給出相應的測量誤差。

②選擇坐標紙,坐標紙的選擇應為便於作圖或更能方使地反映變數之間的相互關系為原則。可根據需要和方便選擇不同的坐標紙,原來為曲線關系的兩個變數經過坐標變換利用對數坐標就要能變成直線關系。常用的有直角坐標紙、單對數坐標紙和雙對數坐標紙。

③坐標分度,在坐標紙選定以後,就要合理的確定圖紙上每一小格的距離所代表的數值,但起碼應注意下面兩個原則:

a.格值的大小應當與測量得值所表達的精確度相適應。

b.為便於制圖和利用圖形查找數據每個格值代表的有效數字盡量採用1、2、4、5避免使用3、6、7、9等數字。

④作散點圖,根據確定的坐標分度值將數據作為點的坐標在坐標紙中標出,考慮到數據的分類及測量的數據組先後順序等,應採用不同符號標出點的坐標。常用的符號有:×○●△■等,規定標記的中心為數據的坐標。

⑤擬合曲線,擬合曲線是用圖形表示實驗結果的主要目的,也是培養學生作圖方法和技巧的關鍵一環,擬合曲線時應注意以下幾點:

a.轉折點盡量要少,更不能出現人為折曲。

b.曲線走向應盡量靠近各坐標點,而不是通過所有點。

c.除曲線通過的點以外,處於曲線兩側的點數應當相近。

⑥註解說明,規范的作圖法表示實驗結果要對得到的圖形作必要的說明,其內容包括圖形所代表的物理定義、查閱和使用圖形的方法,制圖時間、地點、條件,制圖數據的來源等。

(2)實驗結果的方程表示法。方程式是中學生應用較多的一種數學形式,利用方程式表示實驗結果。不僅在形式上緊湊,並且也便於作數學上的進一步處理。實驗結果的方程表示法一般可分以下四步進行。

①確立數學模型,對於只研究兩個變數相互關系的實驗,其數學模型可藉助於圖解法來確定,首先根據實驗數據在直角坐標系中作出相應圖線,看其圖線是否是直線,反比關系曲線,冪函數曲線,指數曲線等,就可確定出經驗方程的數學模型分別為:

Y=a+bx,Y=a+b/x,Y=a\b,Y=aexp(bx)

②改直,為方便的求出曲線關系方程的未定系數,在精度要求不太高的情況下,在確定的數學模型的基礎上,通過對數學模型求對數方法,變換成為直線方程,並根據實驗數據用單對數(或雙對數)坐標系作出對應的直線圖形。

③求出直線方程未定系數,根據改直後直線圖形,通過學生已經掌握的解析幾何的原理,就可根據坐標系內的直線找出其斜率和截距,確定出直線方程的兩個未定系數。

④求出經驗方程,將確定的兩個未定系數代入數學模型,即得到中學生比較習慣的直角坐標系的經驗方程。

中學物理實驗有它一套實驗知識、方法、習慣和技能,要學好這套系統的實驗知識、方法、習慣和技能,需要教師在教學過程中作科學的安排,由淺入深,由簡到繁加以培養和鍛煉。逐步掌握探索未知物理規律的基本方法。

③ 實驗方法和數據分析方法,看看其中數據情況,怎麼處理的

實驗數據處理的幾種方法
物理實驗中測量得到的許多數據需要處理後才能表示測量的最終結果。對實驗數據進行記錄、整理、計算、分析、擬合等,從中獲得實驗結果和尋找物理量變化規律或經驗公式的過程就是數據處理。它是實驗方法的一個重要組成部分,是實驗課的基本訓練內容。本章主要介紹列表法、作圖法、圖解法、逐差法和最小二乘法。
1.4.1 列表法
列表法就是將一組實驗數據和計算的中間數據依據一定的形式和順序列成表格。列表法可以簡單明確地表示出物理量之間的對應關系,便於分析和發現資料的規律性,也有助於檢查和發現實驗中的問題,這就是列表法的優點。設計記錄表格時要做到:
(1)表格設計要合理,以利於記錄、檢查、運算和分析。
(2)表格中涉及的各物理量,其符號、單位及量值的數量級均要表示清楚。但不要把單位寫在數字後。
(3)表中數據要正確反映測量結果的有效數字和不確定度。列入表中的除原始數據外,計算過程中的一些中間結果和最後結果也可以列入表中。
(4)表格要加上必要的說明。實驗室所給的數據或查得的單項數據應列在表格的上部,說明寫在表格的下部。
1.4.2 作圖法
作圖法是在坐標紙上用圖線表示物理量之間的關系,揭示物理量之間的聯系。作圖法既有簡明、形象、直觀、便於比較研究實驗結果等優點,它是一種最常用的數據處理方法。
作圖法的基本規則是:
(1)根據函數關系選擇適當的坐標紙(如直角坐標紙,單對數坐標紙,雙對數坐標紙,極坐標紙等)和比例,畫出坐標軸,標明物理量符號、單位和刻度值,並寫明測試條件。
(2)坐標的原點不一定是變數的零點,可根據測試范圍加以選擇。,坐標分格最好使最低數字的一個單位可靠數與坐標最小分度相當。縱橫坐標比例要恰當,以使圖線居中。
(3)描點和連線。根據測量數據,用直尺和筆尖使其函數對應的實驗點准確地落在相應的位置。一張圖紙上畫上幾條實驗曲線時,每條圖線應用不同的標記如「+」、「×」、「·」、「Δ」等符號標出,以免混淆。連線時,要顧及到數據點,使曲線呈光滑曲線(含直線),並使數據點均勻分布在曲線(直線)的兩側,且盡量貼近曲線。個別偏離過大的點要重新審核,屬過失誤差的應剔去。

④ 數據分析的基本方法有哪些

數據分析的三個常用方法
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

⑤ 實驗報告的實驗數據分析與處理怎麼寫

根據你的實驗數據根據實驗相關的一些定理、公式進行計算得出數據結果,然後根據算出的數據結果進行分析,論證實驗成功或失敗,或者得出實驗條件下產生的某種現象或結果

⑥ 數據分析常用的方法有哪些

1、簡單趨勢


通過實時訪問趨勢了解供應商及時交貨情況。如產品類型,供應商區域(交通因子),采購額,采購額對供應商佔比。


2、多維分解


根據分析需要,從多維度對指標進行分解。例如產品采購金額、供應商規模(需量化)、產品復雜程度等等維度。


3、轉化漏斗


按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有不同供應商及時交貨率趨勢等。


4、用戶分群


在精細化分析中,常常需要對有某個特定行為的供應商群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。


5、細查路徑


數據分析可以觀察供應商的行為軌跡,探索供應商與本公司的交互過程;進而從中發現問題、激發靈感亦或驗證假設。


6、留存分析


留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新新供應商”在一段時間內“重復行為”的比例。通過分析不同供應商群組的留存差異、使用過不同功能供應商的留存差異來找到供應鏈的優化點。


7、A/B 測試


A/B測試就是同時進行多個方案並行測試,但是每個方案僅有一個變數不同;然後以某種規則優勝略汰選擇最優的方案。數據分析需要在這個過程中選擇合理的分組樣本、監測數據指標、事後分析和不同方案評估。

⑦ 實驗數據處理包括哪些內容

實驗數據的處理方法:
1. 平均值法
取算術平均值是為減小偶然誤差而常用的一種數據處理方法。通常在同樣的測量條件下,對於某一物理量進行多次測量的結果不會完全一樣,用多次測量的算術平均值作為測量結果,是真實值的最好近似。
2. 列表法
實驗中將數據列成表格,可以簡明地表示出有關物理量之間的關系,便於檢查測量結果和運算是否合理,有助於發現和分析問題,而且列表法還是圖象法的基礎。
列表時應注意:
①表格要直接地反映有關物理量之間的關系,一般把自變數寫在前邊,因變數緊接著寫在後面,便於分析。
②表格要清楚地反映測量的次數,測得的物理量的名稱及單位,計算的物理量的名稱及單位。物理量的單位可寫在標題欄內,一般不在數值欄內重復出現。
③表中所列數據要正確反映測量值的有效數字。
3. 作圖法
選取適當的自變數,通過作圖可以找到或反映物理量之間的變化關系,並便於找出其中的規律,確定對應量的函數關系。作圖法是最常用的實驗數據處理方法之一。
描繪圖象的要求是:
①根據測量的要求選定坐標軸,一般以橫軸為自變數,縱軸為因變數。坐標軸要標明所代表的物理量的名稱及單位。
②坐標軸標度的選擇應合適,使測量數據能在坐標軸上得到准確的反映。為避免圖紙上出現大片空白,坐標原點可以是零,也可以不是零。坐標軸的分度的估讀數,應與測量值的估讀數(即有效數字的末位)相對應。

⑧ 常用的實驗數據分析方法有哪些

1、聚類分析


聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。


2、因子分析


因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。


3、相關分析


相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。


4、對應分析


對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。


5、回歸分析


研究一個隨機變數Y對另一個(X)或一組(X1,X2,„,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。

⑨ 如何進行臨床試驗數據統計分析

統計學方法的正確抉擇
一。
統計方法抉擇的條件
在臨床科研工作中,正確地抉擇統計分析方法,應充分考慮科研工作者的分析目的、臨床科研設計方法、搜集到的數據資料類型、數據資料的分布特徵與所涉及的數理統計條件等。
其中任何一個問題沒考慮到或考慮有誤,都有可能導致統計分析方法的抉擇失誤。
此外,統計分析方法的抉擇應在科研的設計階段來完成,而不應該在臨床試驗結束或在數據的收集工作已完成之後。
對臨床科研數據進行統計分析和進行統計方法抉擇時,應考慮下列因素:
1.分析目的
對於臨床醫生及臨床流行病醫生來說,在進行統計分析前,一定要明確利用統計方法達到研究者的什麼目的。
一般來說,統計方法可分為描述與推斷兩類方法。
一是統計描述(descriptivestatistics),二是統計推斷(inferentialstatistics)。
統計描述,即利用統計指標、統計或統計表,對數據資料所進行的最基本的統計分析,使其能反映數據資料的基本特徵,有利於研究者能准確、全面地了解數據資料所包涵的信息,以便做出科學的推斷。
統計表,如頻數表、四格表、列聯表等;
統計,如直方、餅,散點等;
統計指標,如均數、標准差、率及構成比等。
統計推斷,即利用樣本所提供的信息對總體進行推斷(估計或比較),其中包括參數估計和假設檢驗,如可信區間、t檢驗、方差分析、c2檢驗等,如要分析甲葯治療與乙葯治療兩組的療效是否不相同、不同地區某病的患病率有無差異等。
還有些統計方法,既包含了統計描述也包含了統計推斷的內容,如不同變數間的關系分析。
相關分析,可用於研究某些因素間的相互聯系,以相關系數來衡量各因素間相關的密切程度和方向,如高血脂與冠心病、慢性宮頸炎與宮頸癌等的相關分析;
回歸分析,可用於研究某個因素與另一因素(變數)的依存關系,即以一個變數去推測另一變數,如利用回歸分析建立起來的回歸方程,可由兒童的年齡推算其體重。
2.資料類型
資料類型的劃分現多採用國際通用的分類方法,將其分為兩類:數值變數(numericalvariable)資料和分類變數(categoricalvariable)資料。
數值變數是指其值是可以定量或准確測量的變數,其表現為數值大小的不同;
而分類變數是指其值是無法定量或不能測量的變數,其表現沒有數值的大小而只有互不相容的類別或屬性。
分類變數又可分為無序分類變數和有序分類變數兩小類,無序分類變數表現為沒有大小之分的屬性或類別,如:性別是兩類無序分類變數,血型是四類無序分類變數;
有序分類變數表現為各屬性或類別間有程度之分,如:臨床上某種疾病的「輕、中、重」,治療結果的「無效、顯效、好轉、治癒」。
由此可見,數值變數資料、無序分類變數資料和有序分類變數資料又可叫做計量資料、計數資料和等級資料。
資料類型的劃分與統計方法的抉擇有關,在多數情況下不同的資料類型,選擇的統計方法不一樣。
如數值變數資料的比較可選用t檢驗、u檢驗等統計方法;
而率的比較多用c2檢驗。
值得注意的是,有些臨床科研工作者,常常人為地將數值變數的結果轉化為分類變數的臨床指標,然後參與統計分析,如患者的血紅蛋白含量,研究者常用正常、輕度貧血、中度貧血和重度貧血來表示,這樣雖然照顧了臨床工作的習慣,卻損失了資料所提供的信息量。
換言之,在多數情況下,數值變數資料提供的信息量最為充分,可進行統計分析的手段也較為豐富、經典和可靠,與之相比,分類變數在這些方面都不如數值變數資料。
因此,在臨床實驗中要盡可能選擇量化的指標反映實驗效應,若確實無法定量時,才選用分類數據,通常不宜將定量數據轉變成分類數據。
3.設計方法
在眾多的臨床科研設計方法中,每一種設計方法都有與之相適應的統計方法。
在統計方法的抉擇時,必須根據不同的臨床科研設計方法來選擇相應的統計分析方法。
如果統計方法的抉擇與設計方法不一致,統計分析得到的任何結論都是錯誤的。
在常用的科研設計方法中,有成組設計(完全隨機設計)的t檢驗、配對t檢驗、成組設計(完全隨機設計)的方差分析、配伍設計(隨機區組設計)的方差分析等,都是統計方法與科研設計方法有關的佐證。
因此,應注意區分成組設計(完全隨機設計)與配對和配伍設計(隨機區組設計),在成組設計中又要注意區別兩組與多組設計。
最常見的錯誤是將配對或配伍設計(隨機區組設計)的資料當做成組設計(完全隨機設計)來處理,如配對設計的資料使用成組t檢驗、配伍設計(隨機區組設計)使用成組資料的方差分析;
或將三組及三組以上的成組設計(完全隨機設計)資料的比較採用多個t檢驗、三個或多個率的比較採用四格表的卡方檢驗來進行比較,都是典型的錯誤。
如下表:
表1常見與設計方法有關的統計方法抉擇錯誤
設計方法錯誤的統計方法正確統計方法
兩個均數的比較(成組設計、完全隨機設計)成組設計的t檢驗、成組設計的秩和檢驗
多個均數的比較(成組設計、完全隨機設計)多個成組設計的t檢驗完全隨機設計的方差分析及q檢驗、完全隨機設計的秩和檢驗及兩兩比較
數值變數的配對設計成組設計的t檢驗配對t檢驗、配對秩和檢驗
隨機區組設計(配伍設計)多個成組設計的t檢驗、完全隨機設計的方差分析隨機區組設計的方差分析及q檢驗、隨機區組設計的秩和檢驗及兩兩比較
交叉設計成組設計的t檢驗、配對t檢驗、配對秩和檢驗交叉設計的方差分析、交叉設計的秩和檢驗
4.分布特徵及數理統計條件
數理統計和概率論是統計的理論基礎。
每種統計方法都要涉及數理統計公式,而這些數理統計公式都是在一定條件下推導和建立的。
也就是說,只有當某個或某些條件滿足時,某個數理統計公式才成立,反之若不滿足條件時,就不能使用某個數理統計公式。
在數理統計公式推導和建立的條件中,涉及最多的是數據的分布特徵。
數據的分布特徵是指數據的數理統計規律,許多數理統計公式都是在特定的分布下推導和建立的。
若實際資料服從(符合)某種分布,即可使用該分布所具有的數理統計規律來分析和處理該實際資料,反之則不能。
在臨床資料的統計分析過程中,涉及得最多的分布有正態分布、偏態分布、二項分布等。
許多統計方法對資料的分布有要求,如:均數和標准差、t和u檢驗;
方差分析都要求資料服從正態分布,而中位數和四分位數間距、秩和檢驗等,可用於不服從正態分布的資料。
所以,臨床資料的統計分析過程中,應考慮資料的分布特徵,最起碼的要求是熟悉正態分布與偏態分布。
例如:在臨床科研中,許多資料的描述不考慮資料的分布特徵,而多選擇均數與標准差。
如某婦科腫瘤化療前的血象值,資料如下表:
某婦科腫瘤化療前的血象值
指標名例數均數標准差偏度系數P值峰度系數P值
血紅蛋白(g/L)98111.9918.820.1800.4590.0250.958
血小板(×109/L)98173.5887.111.3530.0001.8430.000
白細胞(×109/L)986.79302.7671.2070.0001.2020.013
從上結果可見,若只看三項指標的均數和標准差,臨床醫生也許不會懷疑有什麼問題。
但是經正態性檢驗,病人的血紅蛋白服從正態分布,而血小板和白細胞兩項指標的偏度和峰度系數均不服從正態分布(P<0.05)。
因此,描述病人的血小板和白細胞平均水平正確的指標是中位數,而其變異程度應使用四分位數間距。
除了數據的分布特徵外,有些數理統計公式還有其它一些的條件,如t檢驗和方差分析的方差齊性、卡方檢驗的理論數(T)大小等。
總之,對於臨床科研工作者來說,為正確地進行統計方法的抉擇,首先要掌握或熟悉上述影響統計方法抉擇因素;
其次,還應熟悉和了解常用統計方法的應用條件。
二。
數據資料的描述
統計描述的內容包括了統計指標、統計和表,其目的是使數據資料的基本特徵更加清晰地表達。
本節只討論統計指標的正確選用,而統計表的正確使用請參閱其他書籍。
1.數值變數資料的描述
描述數值變數資料的基本特徵有兩類指標,一是描述集中趨勢的指標,用以反映一組數據的平均水平;
二是描述離散程度的指標,用以反映一組數據的變異大小。
各指標的名稱及適用范圍等見表2。
表2描述數值變數資料的常用指標
指標名稱用途適用的資料
均數(X——)
描述一組數據的平均水平,集中位置正態分布或近似正態分布
中位數(M)與均數相同偏態分布、分布未知、兩端無界
幾何均數(G)與均數相同對數正態分布,等比資料
標准差(S)
描述一組數據的變異大小,離散程度
正態分布或近似正態分布
四分位數間距
(QU-QL)與標准差相同偏態分布、分布未知、兩端無界
極差(R)與標准差相同觀察例數相近的數值變數
變異系數(CV)與標准差相同比較幾組資料間的變異大小
從表中可看出,均數與標准差聯合使用描述正態分布或近似正態分布資料的基本特徵;
中位數與四分位數間距聯合使用描述偏態分布或未知分布資料的基本特徵。
這些描述指標應用時,最常見的錯誤是不考慮其應用條件的隨意使用,如:用均數和標准差描述偏態分布、分布未知或兩端無界的資料,這是目前在臨床研究文獻中較為普遍和典型的錯誤。

⑩ ELISA實驗數據處理方法是怎樣的

ELISA試劑盒在國內有許多種叫法:例如:ELISA檢測試劑盒、ELISA?Kit、酶聯免疫試劑盒、酶聯免疫吸附測定試劑盒、酶聯免疫分析試劑盒、酶免試劑盒等,比較常見的叫法是ELISA檢測試劑盒、酶聯免疫吸附測定試劑盒等?ELISA試劑盒自從60-70年代問世以來,得到全世界科研工作者的認可及推崇,在歐美及中國獲得很大的推廣,尤其是國內生化領域的長足發展。Elisa生物試驗是一種敏感性高,特異性強,重復性好的實驗診斷方法。由於其試劑穩定、易保存,操作簡便,結果判斷較客觀等因素,已廣泛應用在免疫學檢驗的各領域中。本章交流分享:ELISA實驗數據處理方法是怎樣的?想要了解的同學歡迎來電咨詢。
1、擬和曲線:
輸入行: 濃度值, 如0 10 50 100
輸入第二行:該濃度下的調整後的od值,如0 0.586 1.397 1.997 3.42
選擇這些輸入的數據,用插入里的圖表按鈕,進入圖表向導,在「標准類型」中選擇「xy散點圖」;在「子圖表類型」中選擇「折線散點圖」,按「下一步」;選擇「系列產生在行」,按「下一步」;數據標志,可以填寫:如數據y軸,OD值;數據x軸,濃度;按下一步,點擊完成。可得曲線圖。
單擊曲線,按右鍵,選擇「添加趨勢線」,在類型中,選擇多項式;在選項中,選擇顯示公式,選擇顯示R平方值。
得到公式和R平方值。
也可以用上面說的方法:雙擊圖表,把它輸入到圖表的數據中,就可以擬和曲線。
2、計算濃度:
次實驗:
標准曲線為:
y = -4E-05x2 + 0.026x
R2 = 0.9745
為例,已知OD值,計算濃度。
由於y = -4E-05x2 + 0.026x,所以可以得到:
4E-05x2 -0.026x +y=0
ax2 +bx +y=0
a=4E-05;b=-0.026;
x=(-b-(b*b-4ay)(平方根))/(2*a)
代入a,b,和y值,得
x=(0.026-(0.026*0.026-0.00016*y)(平方根))/(2*0.00004)
在excel里可以用以下公式表示:
x=(0.026-EXP(LN(0.026*0.026-0.00016*y)/2))/(2*0.00004)
通用公式為:
x=(-b-EXP(LN(b*b-4ay)/2))/(2*a)
應用excel的公式拷貝功能,計算所有濃度

閱讀全文

與試驗數據處理分析方法相關的資料

熱點內容
高層窗戶封閉的安裝方法 瀏覽:127
嫩肉粉煮牛肉的食用方法 瀏覽:124
關羽上王訓練方法 瀏覽:905
旅行社如何引進客流的十種方法 瀏覽:209
禿頂快速治療方法 瀏覽:626
華為清理手機垃圾方法 瀏覽:940
秒開手機殼的方法 瀏覽:654
胎兒月份計算方法 瀏覽:299
電暖地暖的安裝方法 瀏覽:757
季節性腸炎治療方法 瀏覽:106
研究資料的分析方法論文 瀏覽:551
40425的簡便方法計算 瀏覽:842
定性定量決策分析方法 瀏覽:408
青芒果的食用方法 瀏覽:832
塑料瓶微生物檢測方法國標法 瀏覽:484
ahc眼膜使用方法 瀏覽:331
最簡單的補腎治早泄方法 瀏覽:520
靜電手環的使用方法 瀏覽:997
開賬的步驟與方法 瀏覽:280
養金魚簡單方法 瀏覽:828