導航:首頁 > 研究方法 > 數學函數研究方法

數學函數研究方法

發布時間:2022-07-09 02:49:57

㈠ SOS!!高中數學函數學習方法!

常用的求值域的方法
(1)化歸法;(2)圖象法(數形結合),
(3)函數單調性法,
(4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等
函數是中學數學的重要的基本概念之一,它與代數式、方程、不等式、三角函數、微積分等內容有著密切的聯系,應用十分廣泛。函數的基礎性強、概念多,其中函數的定義域、值域、奇偶性等是難點之一,是高考的常見的題型.
一.觀察法
通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域。
例1求函數y=3+√(2-3x) 的值域。
點撥:根據算術平方根的性質,先求出√(2-3x) 的值域。
解:由算術平方根的性質,知√(2-3x)≥0,
故3+√(2-3x)≥3。
∴函數的知域為 .
點評:算術平方根具有雙重非負性,即:(1)被開方數的非負性,(2)值的非負性。
本題通過直接觀察算術平方根的性質而獲解,這種方法對於一類函數的值域的求法,簡捷明了,不失為一種巧法。
練習:求函數y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})
二.反函數法
當函數的反函數存在時,則其反函數的定義域就是原函數的值域。
例2求函數y=(x+1)/(x+2)的值域。
點撥:先求出原函數的反函數,再求出其定義域。
解:顯然函數y=(x+1)/(x+2)的反函數為:x=(1-2y)/(y-1),其定義域為y≠1的實數,故函數y的值域為{y∣y≠1,y∈R}。
點評:利用反函數法求原函數的定義域的前提條件是原函數存在反函數。這種方法體現逆向思維的思想,是數學解題的重要方法之一。
練習:求函數y=(10x+10-x)/(10x-10-x)的值域。(答案:函數的值域為{y∣y<-1或y>1})
三.配方法
當所給函數是二次函數或可化為二次函數的復合函數時,可以利用配方法求函數值域
例3:求函數y=√(-x2+x+2)的值域。
點撥:將被開方數配方成完全平方數,利用二次函數的最值求。
解:由-x2+x+2≥0,可知函數的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函數的值域是[0,3/2]
點評:求函數的值域不但要重視對應關系的應用,而且要特別注意定義域對值域的制約作用。配方法是數學的一種重要的思想方法。
練習:求函數y=2x-5+√15-4x的值域.(答案:值域為{y∣y≤3})
四.判別式法
若可化為關於某變數的二次方程的分式函數或無理函數,可用判別式法求函數的值域。
例4求函數y=(2x2-2x+3)/(x2-x+1)的值域。
點撥:將原函數轉化為自變數的二次方程,應用二次方程根的判別式,從而確定出原函數的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)
當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3
當y=2時,方程(*)無解。∴函數的值域為2<y≤10/3。
點評:把函數關系化為二次方程F(x,y)=0,由於方程有實數解,故其判別式為非負數,可求得函數的值域。常適應於形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數。
練習:求函數y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。
五.最值法
對於閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數z=xy+3x的值域。
點撥:根據已知條件求出自變數x的取值范圍,將目標函數消元、配方,可求出函數的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函數z在區間[-1,3/2]上連續,故只需比較邊界的大小。
當x=-1時,z=-5;當x=3/2時,z=15/4。
∴函數z的值域為{z∣-5≤z≤15/4}。
點評:本題是將函數的值域問題轉化為函數的最值。對開區間,若存在最值,也可通過求出最值而獲得函數的值域。
練習:若√x為實數,則函數y=x2+3x-5的值域為 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
(答案:D)。
六.圖象法
通過觀察函數的圖象,運用數形結合的方法得到函數的值域。
例6求函數y=∣x+1∣+√(x-2)2 的值域。
點撥:根據絕對值的意義,去掉符號後轉化為分段函數,作出其圖象。
解:原函數化為 -2x+1 (x≤1)
y= 3 (-1<x≤2)
2x-1(x>2)
它的圖象如圖所示。
顯然函數值y≥3,所以,函數值域[3,+∞]。
點評:分段函數應注意函數的端點。利用函數的圖象
求函數的值域,體現數形結合的思想。是解決問題的重要方法。
求函數值域的方法較多,還適應通過不等式法、函數的單調性、換元法等方法求函數的值域。
七.單調法
利用函數在給定的區間上的單調遞增或單調遞減求值域。
例1求函數y=4x-√1-3x(x≤1/3)的值域。
點撥:由已知的函數是復合函數,即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區間內分別討論函數的增減性,從而確定函數的值域。
解:設f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內為增函數,從而y=f(x)+g(x)= 4x-√1-3x
在定義域為x≤1/3上也為增函數,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數值域為{y|y≤4/3}。
點評:利用單調性求函數的值域,是在函數給定的區間上,或求出函數隱含的區間,結合函數的增減性,求出其函數在區間端點的函數值,進而可確定函數的值域。
練習:求函數y=3+√4-x 的值域。(答案:{y|y≥3})
八.換元法
以新變數代替函數式中的某些量,使函數轉化為以新變數為自變數的函數形式,進而求出值域。
例2求函數y=x-3+√2x+1 的值域。
點撥:通過換元將原函數轉化為某個變數的二次函數,利用二次函數的最值,確定原函數的值域。
解:設t=√2x+1 (t≥0),則
x=1/2(t2-1)。
於是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函數的值域為{y|y≥-7/2}。
點評:將無理函數或二次型的函數轉化為二次函數,通過求出二次函數的最值,從而確定出原函數的值域。這種解題的方法體現換元、化歸的思想方法。它的應用十分廣泛。
練習:求函數y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九.構造法
根據函數的結構特徵,賦予幾何圖形,數形結合。
例3求函數y=√x2+4x+5+√x2-4x+8 的值域。
點撥:將原函數變形,構造平面圖形,由幾何知識,確定出函數的值域。
解:原函數變形為f(x)=√(x+2)2+1+√(2-x)2+22
作一個長為4、寬為3的矩形ABCD,再切割成12個單位
正方形。設HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三邊關系知,AK+KC≥AC=5。當A、K、C三點共
線時取等號。
∴原函數的知域為{y|y≥5}。
點評:對於形如函數y=√x2+a ±√(c-x)2+b(a,b,c均為正數),均可通過構造幾何圖形,由幾何的性質,直觀明了、方便簡捷。這是數形結合思想的體現。

練習:求函數y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
十.比例法
對於一類含條件的函數的值域的求法,可將條件轉化為比例式,代入目標函數,進而求出原函數的值域。
例4已知x,y∈R,且3x-4y-5=0,求函數z=x2+y2的值域。
點撥:將條件方程3x-4y-5=0轉化為比例式,設置參數,代入原函數。
解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
當k=-3/5時,x=3/5,y=-4/5時,zmin=1。
函數的值域為{z|z≥1}.
點評:本題是多元函數關系,一般含有約束條件,將條件轉化為比例式,通過設參數,可將原函數轉化為單函數的形式,這種解題方法體現諸多思想方法,具有一定的創新意識。
練習:已知x,y∈R,且滿足4x-y=0,求函數f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一.利用多項式的除法
例5求函數y=(3x+2)/(x+1)的值域。
點撥:將原分式函數,利用長除法轉化為一個整式與一個分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函數y的值域為y≠3的一切實數。
點評:對於形如y=(ax+b)/(cx+d)的形式的函數均可利用這種方法。
練習:求函數y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
十二.不等式法
例6求函數Y=3x/(3x+1)的值域。
點撥:先求出原函數的反函數,根據自變數的取值范圍,構造不等式。
解:易求得原函數的反函數為y=log3[x/(1-x)],
由對數函數的定義知 x/(1-x)>0
1-x≠0
解得,0<x<1。
∴函數的值域(0,1)。
點評:考查函數自變數的取值范圍構造不等式(組)或構造重要不等式,求出函數定義域,進而求值域。不等式法是重要的解題工具,它的應用非常廣泛。是數學解題的方法之一。
以下供練習選用:求下列函數的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1)。 (y>1或y<0)

㈡ 關於高中數學中函數的學習方法。

首先最最重要的是掌握基本初等函數的性質(包括定義域,值域,單調性等),要結合圖像牢記。
然後多做題,多總結,舉一反三。這里推薦一定要多看輔導書的例題和知識點,這正是所謂的見多識廣。

多做題才是硬道理,多思考才能有長進。

如何學好高中數學函數

一、教給學生閱讀課本的方法
1.對於識字不多,思考能力有限的低年級的學生來說,應採取在老師指導下講解和閱讀相結合的辦法。如對剛入學的小朋友,首先要幫助他們初步了解數學課的特點,知道數學課要學習哪些知識,看數學課本的插圖時要看清、數准圖上各種東西的個數。接著教他們學會有順序地閱讀教科書,即要從上到下,從左往右地看;教學10以內數的認知看主題圖時,要學會先整體後部分地看。又如,低年級教材中的知識是用各種圖示表示的,教師要把指導重點放在幫助學生掌握看圖方法上,努力使他們做到四會:一要會看例題插圖,能比較准確地進述圖意;二要會看標有思維過程的算式,看懂計算方法;三要會看應用題的圖示,能根據圖示理解題意,搞清數量之間的關系、思考解答方法;四要會看多種練習形式,懂得練習題的要求。
2.對於已積累了一定的知識和具有一定能力的中年級學生來說,教師可採用半工半讀半扶半放的方式進行培養。如教師既可先講後讀,具體指導學生閱讀課本的方法;也可騙制閱讀提綱,讓學生帶著提綱閱讀課本,尋找答案,幫助學生理解教材。
3.對於具有一定自學能力的高年級學生來說,則可採取課前預習、啟發引導、獨立閱讀的辦法。如指導預習時,教師對學生要有明確的要求,要有預習的范圍,要提出必要的思考題或實驗作業,要檢查預習情況。課堂上教師可以放手讓學生去讀讀、講講、論論、練練的方式進行自學與討論,要求他們在把握知識的基礎上理清知識體系,進一步提高認知水平。
二、教給學生科學的記憶方法
1.理解記憶法。就是通過學生的積極思維,依據事物的內在聯系,在理解的基礎上去記憶的方法。如:什麼叫梯形。首先讓學生通過認真觀察,理解「只有一組對邊」是什麼意思,若把「只」字去掉又會怎樣。通過積極思考,學生認知到「只有一組對邊平行」就是四條邊中相對的兩條邊為一組,其中一組平行,另一組不平行。這樣學生在理解的基礎上記憶梯形這個概念就容易了。
2.規律記憶法。就是尋找事物內在規律,抓住其規律幫助記憶的方法。數學知識是有規律的,只要引導學生掌握其規律,就可以進行有效記憶。例如:記憶長度、面積、體積單位進率。因為長度單位相鄰之間的進率是10,面積單位相鄰之間的進率是100,體積單位之間的進率是1000。掌握了這個規律記憶就比較容易。
3.形象記憶法。就是藉助事物的形象或表象進行記憶的方法。小學生的思維以形象思維為主,逐步向抽象思維發展。在教學中,教師講課時要注意生動、形象,以喚醒學生對事物的表象,進行形象記憶。例如,一年級數的認知教學時,老師把數與某些實物形象記憶:把「2」比作小鴨子、「3」比作耳朵等。
4.比較記憶法。這是把相似、相近的數學材科學的進行對比,把握它們的相同點與不同點,加強記憶的一種方法。例如,整除與除盡,質數與互質數等,在學生理解後,引導學生進行比較記憶。
5.類比聯想記憶法。是指對某一事物的感知或回憶引起性質上相似的事物的回憶的方法。例如,讓學生記憶分數的基本性質時,引導學生聯想除法的商不變性質和除法與分數的關系,那麼分數的基本性質就不難記憶了。
6.歸納記憶法。是把具有內在聯系的知識集中起來,組成系統,形成網路的記憶方法。你如,有關面積知識,學生是跨越幾個年級才全部學完。這些圖形有特徵上的不同,也有公式上的區別。零敲碎打獲得的知識,必須給予系統上的整理,才能保證這部分知識本身固有的整體性。可以通過下面網狀圖形,把這些圖形的內在聯系揭示出來,這樣有利於學生進行系統記憶。
三、教給學生復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精練概括、牢固掌握的目的。學生對數學知識的學習,是包括一堂堂數學課累積起來的,因而所獲得的知識往往是零碎的和片面的,時間一長,就會出現知識鏈條的斷裂現象。基於這一點,單元復習和總復習都是很重要的。小學數學教學中,復習的方法主要有以下幾點:
1.概括復習。學生每學完一個小單元或一個大單元,就組織他們對於知識體系進行一次再概括,理出綱目,記住輪廓,列出重點,幫助他們掌握單元的主要內容。
2.分類復習。引導學生把學過的知識和技能進行分類整理、分類比較,以加強知識的內在聯系和知識的深度、廣度,幫助學生加深理解與記憶。
3.區別復習。把學過的相似的概念、規則等,如以區別、比較,掌握知識的特徵。總之,一方面,復習要在理解教材的基礎上,溝通知識間的內在聯系,找出重點、關鍵,然後提煉概況,組成一個知識系統,從而形成或發展擴大認知結構;另一方面,通過復習,不斷地對知識本身或從數學思想方法角度進行提高與精煉,是有利於能力的發展與提高的。
四、教會學生整理與歸納的方法
整理知識是一項主要的學習方法。小學數學知識,由於學生認識能力的原因,往往分若干層次逐漸完成。一節課後、一個單元後或一個學期後,需要對所學知識進行整理與歸納,形成良好的認知結構,便於記憶和運用。
1.把知識串成「塊」,形成知識網路。
小學幾何初步知識涉及到五線(直線、線段、射線、垂線、平行線)、六角(銳角、直角、鈍角、平角、周角、圓心角)、七形(長方形、正方形、三角形、平行四邊形、梯形、圓形、扇形)五體(長方體、正方體等)教完幾何後,把七種平面圖形組成一個知識網路。
2.系統整理成表,便於記憶運用。按照數學知識的科學體系和小學生的認識規律,小學幾何初步知識分散在小學各冊實現教材中。在總復習中,教師應避免羅列和重復以往知識,而應恢復幾何初步知識原有的知識體系和法則,按點、線(角)、面、體四大部分知識認真系統地歸納整理成表,使之在學生頭腦中條理化、系統化、網路化,便於記憶與運用。
五、教給學生知識遷移的方法
遷移是指已獲得知識、技能乃至方法和態度對學習新知識新技能的影響。先前學習對後繼學習起積極、促進作用的,糾正遷移,反之糾負遷移。人們在解決新課題時,總是利用已有的知識技能去尋找解決問題的方法。數學是一門邏輯性、嚴密性極強的學科,它的知識系統性強,前面的知識是後面的基礎,後面的知識是前面知識的延伸與發展。所以教師必須緊緊抓住前後知識的內在聯系,教給學生知識遷移的方法。

㈣ 初中數學函數知識講解

一、關於函數教材的地位
函數關系是量與量之間關系的抽象,凡涉及到量的關系就少不了要用函數概念去描述、去刻畫,並通過它去研究客觀實際中的數量關系,所以無論就業或升學都要學點函數概念.
高中代數教材是以函數為中心,函數又比較抽象、難學,所以在初中講點函數為高中作點准備也是必要的.
就以初中代數本身而言,像解三角形、二次不等式等也都離不開函數的有關概念.在物理、化學中像勻速運動、波義耳定律、拋射運動、自由落體也都要有相應的函數作基礎.
因此,初中學習函數初步是相當必要的.
二、初中函數教學的特點
首先,從整個中學階段來看,函數教學大致可劃分為下面三個階段:
第一,感性認識階段
這一階段以積累材料為其主要特徵.在正式引入函數概念之前,基本上都屬於這一階段.
這一階段教學的基本內容,大致有以下幾個方面:
(1)通過各種關型的算術運算,讓學生觀察運算的結果與組成這一運算的各項之間的相互關系.如:和數與被加數、加數之間的相互關系,商數與被除數、除數之間的相互關系等.
(2)通過代數式和方程的學習,讓學生進一步認識到如何用文字來表示一般的數量關系;如何用代數式來表示量與量之間的關系等.
(3)通過數的概念的發展,來積累學生關於「集合」這一概念的初步思想.例如在講被開方數的容許值時,可以引導學生注意非負數集合.課本有意識地滲透了一些集合思想,這對以後講函數概念是極其有幫助的.
(4)通過數軸和坐標的教學積累關於「對應」這一概念的初步思想.
第二,理性認識階段
這一階段是函數教學的主要階段.它分為二個小循環.第一個循環是初中的「函數及其圖像」;第二個循環是高中從集合開始一直講到三角函數及其圖像.這一階段的教學任務是正確地形成函數的一般概念,較深刻地理解函數關系,掌握繪制簡單的函數圖像和討論它們的性質的方法,學會應用函數的性質來解決某些比較簡單的實際問題,把學生的認識水平和思維水平向前推進一步.
第三,深化和發展階段
這一階段的主要任務是了解函數的變化趨勢,並通過它,初步掌握極限的方法——無限精確化的方法;利用微積分這一工具,對函數的增減、極值再作深一步的研究,並指出利用初等方法研究函數的局限性.
這三個階段是彼此銜接的,由此可見,初中的函數教學具有承上啟下的作用,對它學習的好壞,會直接影響後面的學習.
其次,初中的函數教學,無論對函數概念還是函數性質的教學,都是一種描述性的.這樣,准確性和通俗性是其教學特點.盡管是描述性的,但交待要准確,不要給學生以錯覺,並且交待又要遇俗易懂,讓學生易於接受.為此需要多舉實例,多運用圖形、表格等直觀手段.
三、關於函數概念
關於函數定義,常常有要素說的提法,如函數是由三個要素組成:定義域、對應法則、值域.這種提法不太科學,最好不要提要素,而應該重點放在函數概念的本質特徵上.因為要素並未完全反映本質特徵.
函數概念,它的本質特徵是兩條:一條是「隨處定義」,一條是「單值對應」(名詞可不必向學生提).
「隨處定義」是指:在一個 R:X→Y的關系中,如果定義域和X相等,則R便是一個隨處定義的關系.也就是說,X中的任一個元x都有Y中的元y和它對應.所以隨處定義的條件是
在圖39所表示的關系中,(1)是隨處定義的,而(2)不是.
單值對應是指:若R為由集X到集Y的關系,而對任何一個x∈X都只有一個y∈Y和它對應,則說R是單值的,即
圖40的(1)、(2)是單值對應,(3)不是單值對應.
在初中代數的函數定義中,本質就是這兩條:「對於x在某一個確定的范圍內的每一個確定的值(隨處定義),y都有唯一確定
的值與它對應(單值對應).」這兩條缺一條就不成為其函數了,所以強調本質特徵比強調要素明確得多了.
此外,還要防止學生把函數都看成式,不然,就縮小了函數概念的外延.為此,在講授函數概念時,還要舉出不能用式子表示的函數的例子.
四、關於函數定義域的教學
中學課本對定義域有兩個方面要求:如果用式子給出,不指明定義域,那是指自然定義域,即使式子有意義的自變數x的取值范圍.課本還指出「遇到實際問題時,確定函數的自變數取值范圍,必須使實際問題也有意義」.所以教學時要有所反映.
求函數定義域要涉及到諸如解方程、不等式、分式、根式等知識,所以是以新帶舊很好的材料,這在教學中應作適當要求,但是題目應該是最基本的,不要故意去搞一些很做作的題,因為這種訓練是沒有多大意義的.
五、關於函數圖像的教學
由於函數往往涉及無窮集,因而一般來說圖像應無限延伸,但這在畫圖像方面有局限,只能用有限來表示無限.這樣,一方面要求有限圖像能反映出無限圖像的主要特徵(如與軸的交點、峰點等要表現出來);另一方面,要反映出無限的趨勢(如與x軸無限接近等).這兩點也是畫函數圖像總的要求.
要讓學生掌握描繪函數圖像的下述技能:設數、計算(或查表)、設坐標單位、標點、補點、用光滑曲線連接.
這里要分兩種情況:
一種情況是事先並不知所畫圖像是什麼樣子,也不知其什麼性質.這時候設點應該密一些,並正、負都有,如果自變數及對應值數值較大,那麼坐標單位可設小一些;如果彎曲處點還不夠,則應適當補點,總之不要讓圖像走樣.
另一種情況是事先已知圖像是什麼樣子,那麼設點可以根據圖像特點來設.如正比例函數,只需設一個點,再與原點連結即可.一次函數可任意設兩點.反比例函數若k>0,只需設第一象限的點,第三象限的點可用原點對稱的點得到.k<0,只需設第二象限的點,第四象限的點可用與原點對稱的點得到.對於二次函數可設頂點、與x軸的兩個交點等.
以上這些技能都應讓學生掌握.
教學中要注意函數圖像在解方程、不等式中的作用.
六、關於反比例函數的教學
反比例函數無論從定義、圖像、性質來說,都是教學的難點.這反映在的敘述方式與正比例函數極其相似,就容易給人以誤解.
(2)反比例函數圖像是曲線而不是直線(第一次出現曲線),畫曲線圖像技能的培養,如曲線是兩支、曲線不與任何軸相交,且與x軸、y軸無限接近等都是難點.
(3)在講授單調性時,對於「負值絕對值越大就越小」,就常常被圖像的表面現象迷惑而錯誤理解,從而對單調性得出錯誤結論.
這些都是應該予以重視的.
七、關於二次函數的教學
二次函數是初中字習函數的高潮和重點.它一方面與二次方程、二次不等式等密切相關,即把二次方程、二次不等式統一在函數觀點下,可把兩者有機地聯系起來;另一方面,在講授二次函數時,又要學習如「沿橫、縱軸平移」、「配方」、「極值」等重要的數學思想、概念和方法,因此二次函數教材具有重要的培養性.
「參數a的意義」、「對稱軸方程」、「沿軸平移」、「極值的意義」等,都是教學的難點.教學中克服這些難點,要從學生實際出發,採用具體的、形象的方法來講授.
有關二次函數的題目難度要適當控制,題型要適當歸類,重點應放在培養分析問題的能力上.

㈤ 怎樣學好初中數學函數有沒有好方法

數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!

學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:

積極做題

二:考試時的技巧

如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.

以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且了解題型的技巧.

㈥ 解高中數學函數主要有那些方法

配湊法,反函數法,分離常數法等等。

㈦ 怎樣進行初中數學函數教學

一、注重「類比」思想
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法。
初中學習的正比例函數、一次函數、反比例函數、二次函數在概念的得來、圖象性質的研究、及基本解題方法上都有著本質上的相似。因此陽光學習網劉老師指出,採用類比的方法不但省時、省力,還有助於學生的理解和應用。是一種既經濟又實效的教學方法
二、注重「數形結合」思想
數形結合的思想方法是初中數學中一種重要的思想方法。
數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
函數的三種表示方法:解析法、列表法、圖象法,本身就體現著函數的「數形結合」。函數圖象就是將變化抽象的函數「拍照」下來研究的有效工具,函數教學離不開函數圖象的研究。
三、注重自變數的取值范圍
自變數的取值范圍,是解函數問題的難點和考點。
正確求出自變數取值范圍,正確理解問題,並化歸為解不等式或不等式組。這需要學生掌握函數的思想,不等式的實際應用,全面考慮取值的實際意義

㈧ 在高中數學內容中,對函數單調性的研究有幾種方法

最常用的是定義法,其次是導數法。
(1)定義法:
x1>x2時,f(x1)>f(x2)或x1<x2時,f(x1)<f(x2),
則函數單調遞增;
x1>x2時,f(x1)<f(x2)或x1<x2時,f(x1)>f(x2),
則函數單調遞減.
(2)導數法:
f′(x)>0,則f(x)單調遞增;f′(x)<0,則f(x)單調遞減。

㈨ 數學初二函數學習方法和知識要點總結


知識點總結
一.函數的相關概念:
1.變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,保持不變的量叫做常量。
注意:變數和常量往往是相對而言的,在不同研究過程中,常量和變數的身份是可以相互轉換的.
在一個變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一的值與它對應,那麼就說x是自變數,y是x的函數.
說明:函數體現的是一個變化的過程,在這一變化過程中,要著重把握以下三點:
(1)只能有兩個變數.
(2)一個變數的數值隨另一個變數的數值變化而變化.
(3)對於自變數的每一個確定的值,函數都有唯一的值與之對應.
二.函數的表示方法和函數表達式的確定:
函數關系的表示方法有三種:
1..解析法:兩個變數之間的關系,有時可以用一個含有這兩個變數的等式表示,這種表示方法叫做解析法.用解析法表示一個函數關系時,因變數y放在等式的左邊,自變數y的代數式放在右邊,其實質是用x的代數式表示y;
注意:解析法簡單明了,能准確地反映整個變化過程中自變數與因變數的關系,但不直觀,且有的函數關系不一定能用解析法表示出來.
2.列表法:把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系的方法叫列表法;
注意:列表法優點是一目瞭然,使用方便,但其列出的對應值是有限的,而且從表中不易看出自變數和函數之間的對應規律。
3..圖象法:用圖象表示函數關系的方法叫做圖象法.圖象法形象直觀,是研究函數的一種很重要的方法。
三.函數(或自變數)值、函數自變數的取值范圍

2.函數求值的幾種形式:
(1)當函數是用函數表達式表示時,示函數的值,就是求代數式的值;
(2)當已知函數值及表達式時,賭注相應自變數的值時,其實質就是解方程;
(3)當給定函數值的取值范圍,求相應的自變數的取值范圍時,其實質就是解不等式(組)。
3..函數自變數的取值范圍是指使函數有意義的自變數的取值的全體.求自變數的取值范圍通常從兩個方面考慮:一是要使函數的解析式有意義;二是符合客觀實際.下面給出一些簡單函數解析式中自變數范圍的確定方法.
(1)當函數的解析式是整式時,自變數取任意實數(即全體實數);
(2)當函數的解析式是分式時,自變數取值是使分母不為零的任意實數;
(3)當函數的解析式是開平方的無理式時,自變數取值是使被開方的式子為非負的實數;
(4)當函數解析式中自變數出現在零次冪或負整數次冪的底數中時,自變數取值是使底數不為零的實數。
說明:當函數表達式表示實際問題或幾何問題時,自變數取值范圍除應使函數表達式有意義外,還必須符合實際意義或幾何意義。
在一個函數關系式中,如果同時有幾種代數式時,函數自變數取值范圍應是各種代數式中自變數取值范圍的公共部分。
四.函數的圖象
1.函數圖象的畫法
確定了函數解析式,要畫出函數的圖象。一般分為以下三個步驟:
(1)列表:取自變數的一些值,計算出對應的函數值,由這一系列的對應值得到一系列的有序實數對;
(2)描點:在直角坐標系中,描出這些有序實數對的對應點;
(3)連線:用平滑的曲線依次把這些點連起來,即可得到這個函數的圖象。
這些是我們老師講過的復習提綱,希望對你有所幫助!

常見考法:(1)考查函數的概念;
(2)求函數值或自變數的取值范圍。

㈩ 初中數學解題方法:數學函數解題技巧

1,首先把握定義和題目的敘述 2,記住一次函數與坐標軸的交點坐標,必須很熟 3,掌握問題的敘述,通法通則是連立方程(當然是有交點的情況) 函數其實在初中的時候就已經講過了,當然那時候是最簡單的一次和二次,而整個高中函數最富有戲劇性的函數實際上也就是二次函數,學好函數總的策略是掌握每一種函數的性質,這樣就可以運用自如,有備無患了。函數的性質一般有單調性、奇偶性、有界性及周期性。能夠完美體現上述性質的函數在中學階段只有三角函數中的正弦函數和餘弦函數。以上是函數的基本性質,通過奇偶性可以衍生出對稱性,這樣就和二次函數聯系起來了,事實上,二次函數可以和以上所有性質聯系起來,任何函數都可以,因為這些性質就是在大量的基本函數中抽象出來為了更加形象地描述它們的。我相信這點你定是深有體會。剩下的冪函數、指數函數對數函數等等本身並不復雜,只要抓住起性質,例如對數函數的定義域,指數函數的值域等等,出題人可以大做文章,答題人可以縱橫捭闔暢游其中。性質是函數最本質的東西,世界的本質就是簡單,復雜只是起外在的表現形式,函數能夠很好到體現這點。另外,高三還要學導數,學好了可以幫助理解以前的東西,學不好還會擾亂人的思路,所以,我建議你去預習,因為預習絕對不會使你落後,我最核心的學習經驗就是預習,這種方法使我的數學遠遠領先其它同學而立於不敗之地。 綜上,在學習函數的過程中,你要抓住其性質,而反饋到學習方法上你就應該預習(有能力的話最好能夠自學) 函數是高考重點中的重點,也就是高考的命題當中確實含有以函數為綱的思想,怎樣學好函數主要掌握以下幾點。第一,要知道高考考查的六個重點函數,一,指數函數;二,對數函數;三,三角函數;四,二次函數;五,最減分次函數;六,雙勾函數Y=X+A/X(A>0)。要掌握函數的性質和圖象,利用這些函數的性質和圖象來解題。另外,要總結函數的解題方法,函數的解題方法主要有三種,第一種方法是基本函數法,就是利用基本函數的性質和圖象來解題;第二種方法是構造輔助函數;第三種方法是函數建模法。要特別突出函數與方程的思想,數形結合思想

閱讀全文

與數學函數研究方法相關的資料

熱點內容
oppo手機的助手在哪裡設置方法 瀏覽:538
尖頭b2單邊橋最簡單方法如何對點 瀏覽:133
燈帶安裝方法直流 瀏覽:86
襯衣領子打結方法視頻 瀏覽:980
修復冰晶使用方法 瀏覽:247
受益所有人的計算方法 瀏覽:883
黃豆怎麼收購方法去雜 瀏覽:659
a5c用簡便方法表示 瀏覽:266
正方形面積的計算方法 瀏覽:278
國標鋁的檢測方法 瀏覽:117
boa9連接wifi方法 瀏覽:867
尿素水溶液的檢測方法 瀏覽:570
評職稱里的技術創新方法怎麼寫 瀏覽:240
電腦取出電池充電方法 瀏覽:386
體育課快速熱身方法 瀏覽:794
如何看出html的解密方法 瀏覽:772
彈力帶健身使用方法 瀏覽:601
如何鑒定蜂蜜真假的方法 瀏覽:666
科目二教育原則和方法有哪些 瀏覽:856
肝結節怎麼治療最好方法 瀏覽:856