① 互聯網金融運營需要關注的數據有哪些
由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。
互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。
根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等
運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。
② 如何進行互聯網金融運營數據的分析,都有哪些方法
作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有
我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。
文 / 徐主峰
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。
③ 如何進行互聯網金融運營數據的分析
今天的互聯網從業者比過去任何時候都重視數據,這並非是因為僅僅來自於「大數據」概念的炒作,而是因為我們可依賴的數據極大豐富,而我們可以動用的工具也相當充足。
這樣,有一批立志專門從事互聯網數據相關事業的朋友出現,也就不足為奇。
盡管,傳統意義上的數據人才早已有之,早在人們需要進行統計分析和概率計算的時候便有精通數學的數據科學家,但互聯網領域的數據人才卻與之有巨大的不同。
互聯網運營數據分析人才的定義
我們如何定義互聯網運營數據分析人才?事實上,定義二字本身會讓我覺得不安。我並不覺得要滿足一定的條條框框才能算「人才」,而涉及到商業領域,許多目標的實現可以有許多不同的方法,而且殊途同歸。
中國互聯網市場對於數據分析人才的需求原本比對開發工程師的需求要弱,不過市場的人才供應情況更少,這個行業普遍缺乏具有系統性數據分析能力的人才。2016年,我明顯感覺到這個缺口在進一步變大,原因在於突然爆發的精益創業、精益經營的需求隨著經濟的下滑而被激發出來。向討要人才的情況也比15年的時候要頻繁得多。
面向未來
數據分析人才的未來取決於數據分析本身的未來。最欣喜的事情是,這個未來現在正變得清晰起來,幾個同方向的力量形成合力正在促進數據分析走向一個從可有可無到不可或缺的階段。第一個力量來源於人們普遍對於數據價值的認可和重視。數據文化比過去要被更廣泛的認同。經濟形勢的走弱也客觀上促進了人們對精細化運營需求的提升,這也提升了數據的價值。第二個力量來自於可以使用的工具比過去要豐富太多,而使用難度又成倍降低。可以比較一下3年前的Omniture和現在的Google Analytics便知道這種變化的速度有多麼的驚人。功能更強大但使用更簡便的工具仍然在不斷涌現。第三個力量來自於資本的力量,即更多的基於數據產品、工具、解決方案、大數據、人工智慧的商業項目被認可和被大規模資助。第四個力量來自於連政府都在極力鼓吹和促進。第五個力量來自於國外的成功先例所起到的正向激勵作用。
一直都強調,數據的革命是繼互聯網革命之後另一個顛覆世界的變革,現在正踩在這個變革的門線上,下一步是自然而然的走向更深遠的領域,創造更大的價值,乃至創造一個前所未有的商業世界。
所以,相信任何一個閱讀了這個文章的朋友,都已經做出了正確的選擇。
④ 金融有哪些分析方法
金融分析一共有以下這些方法
1、套利是指利用一個或多個市場上存在的價格差,在不冒任何風險(或風險極小的)情況下通過踐買貴賣賺取利差的行為。套利是市場無效率的產物。在有效的金融市場上,金融資產不合理定價引發的套利行為,最終會使市場重新回到不存在套利機會的均衡狀態,這時確定的價格就是無套利均衡價格。
2、風險中性指的是這樣一種狀態:投資者並不需要額外的收益來吸引他們承擔風險;所有現金流量都可以通過無風險利率進行貼現求得現值。無套利定價法與風險中性定價法可謂殊途同歸。
3、狀態價格定價技術是無套利原則以及證券復制技術的具體運用。如果我們知道某種資產在未來各種狀態下的回報狀況以及市場無風險利率水平,我們就可以對該資產進行定價。
4、積木分析法主要以圖形來分析收益/風險關系以及金融工具之間的組合/分解關系。
⑤ 量化分析方法有幾種
量化分析法是對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。重復進行定量風險分析反映出來的趨勢可以指出需要增加還是減少風險管理措施,它是風險應對計劃的一項依據,並作為風險監測和控制的組成部分。
(一)技術分析法
技術分析法的主要目標是通過對市場的歷史數據的研究,特別是對價格和交易量的研究,來預測價格的變動方向。技術分析法通常分析市場價格圖標,因此技術分析師被稱為「圖表分析專家」。目的在於識別價格模式和市場趨勢,從而試圖預測未來的變化趨勢。技術分析法的原理包括市場行為包容一切信息(技術分析法旨在弄明白投資者對於此類信息的反應),價格以趨勢方式演變,歷史價格趨於重演,並且投資者具有重蹈先前投資者覆轍的特徵。
(二)基本面分析法
基本面分析法重點分析經濟狀態、利率、通貨膨脹、公司收益、公司資產負債表、以及中央銀行和政府的相關政策。
當基本面分析法應用於選股時,通常會結合對經濟整體方向自上而下的分析(宏觀),從而形成對於市場、行業、利率水平以及匯率水平的觀點,並加之運用自下而上的方法對於某隻股票進行分析(微觀)。自下而上的分析往往會忽略在國別以及產業方面的整體配置而關注於單只股票的選擇。根據投資理念和投資過程,自上而下的分析決定了國別和行業的配置;同時,自下而上的分析則決定了某一國家和行業內部的投資配置。
(三)量化分析法
量化(定量)分析法,正如其名,包括運用量化方法、統計模型、數學公式以及演算法來預測市場走向。在戰術型資產配置中一個常見的方法便是使用多因子模型,通過分析估值、動量指標、風險水平、市場情緒、利率、收益率曲線等因素,從而推導出涵蓋股票、債券和外匯市場等不同市場的買入和賣出信號。雖然有一部分戰術型資產配置策略完全是量化模型驅動的,但將量化分析和基本面分析相結合將更具活力,因為這種結合可以將量化信號融合入基本面分析的過程中。
量化分析的不足在於該分析很大程度上是以觀測到的市場價格的歷史關聯性和走勢為基礎。如果上述關聯性和走勢由於市場反轉或市場承壓而引起歷史關聯性發生變化而失效,那麼量化模型可能會在預測拐點過程中失效。量化模型往往也會在出現政權更替或市場結構化改變時失效。
⑥ 量化分析是什麼意思
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
⑦ 量化投資的主要方法和前沿進展
量化投資是通過計算機對金融大數據進行量化分析的基礎上產生交易決策機制。設計金融數學和計算機的知識和技術,主要有人工智慧、數據挖掘、小波分析、支持向量機、分形理論和隨機過程這幾種。
1.人工智慧
人工智慧(Artificial Intelligence,AI)是研究使用計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及計算機科學、心理學、哲學和語言學等學科,可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。
從思維觀點看,人工智慧不僅限於邏輯思維,還要考慮形象思維、靈感思維才能促進人工智慧的突破性發展,數學常被認為是多種學科的基礎科學,因此人工智慧學科也必須借用數學工具。數學不僅在標准邏輯、模糊數學等范圍發揮作用,進入人工智慧學科後也能促進其得到更快的發展。
金融投資是一項復雜的、綜合了各種知識與技術的學科,對智能的要求非常高。所以人工智慧的很多技術可以用於量化投資分析中,包括專家系統、機器學習、神經網路、遺傳演算法等。
2.數據挖掘
數據挖掘(Data Mining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。
與數據挖掘相近的同義詞有數據融合、數據分析和決策支持等。在量化投資中,數據挖掘的主要技術包括關聯分析、分類/預測、聚類分析等。
關聯分析是研究兩個或兩個以上變數的取值之間存在某種規律性。例如,研究股票的某些因子發生變化後,對未來一段時間股價之間的關聯關系。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閾值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。
預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
聚類就是利用數據的相似性判斷出數據的聚合程度,使得同一個類別中的數據盡可能相似,不同類別的數據盡可能相異。
3.小波分析
小波(Wavelet)這一術語,顧名思義,小波就是小的波形。所謂「小」是指它具有衰減性;而稱之為「波」則是指它的波動性,其振幅正負相間的震盪形式。與傅里葉變換相比,小波變換是時間(空間)頻率的局部化分析,它通過伸縮平移運算對信號(函數)逐步進行多尺度細化,最終達到高頻處時間細分,低頻處頻率細分,能自動適應時頻信號分析的要求,從而可聚焦到信號的任意細節,解決了傅里葉變換的困難問題,成為繼傅里葉變換以來在科學方法上的重大突破,因此也有人把小波變換稱為數學顯微鏡。
小波分析在量化投資中的主要作用是進行波形處理。任何投資品種的走勢都可以看做是一種波形,其中包含了很多噪音信號。利用小波分析,可以進行波形的去噪、重構、診斷、識別等,從而實現對未來走勢的判斷。
4.支持向量機
支持向量機(Support Vector Machine,SVM)方法是通過一個非線性映射,把樣本空間映射到一個高維乃至無窮維的特徵空間中(Hilbert空間),使得在原來的樣本空間中非線性可分的問題轉化為在特徵空間中的線性可分的問題,簡單地說,就是升維和線性化。升維就是把樣本向高維空間做映射,一般情況下這會增加計算的復雜性,甚至會引起維數災難,因而人們很少問津。但是作為分類、回歸等問題來說,很可能在低維樣本空間無法線性處理的樣本集,在高維特徵空間中卻可以通過一個線性超平面實現線性劃分(或回歸)。
一般的升維都會帶來計算的復雜化,SVM方法巧妙地解決了這個難題:應用核函數的展開定理,就不需要知道非線性映射的顯式表達式;由於是在高維特徵空間中建立線性學習機,所以與線性模型相比,不但幾乎不增加計算的復雜性,而且在某種程度上避免了維數災難。這一切要歸功於核函數的展開和計算理論。
正因為有這個優勢,使得SVM特別適合於進行有關分類和預測問題的處理,這就使得它在量化投資中有了很大的用武之地。
5.分形理論
被譽為大自然的幾何學的分形理論(Fractal),是現代數學的一個新分支,但其本質卻是一種新的世界觀和方法論。它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下,在某一方面(形態、結構、信息、功能、時間、能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而極大地拓展了研究視野。
自相似原則和迭代生成原則是分形理論的重要原則。它表示分形在通常的幾何變換下具有不變性,即標度無關性。分形形體中的自相似性可以是完全相同的,也可以是統計意義上的相似。迭代生成原則是指可以從局部的分形通過某種遞歸方法生成更大的整體圖形。
分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科。作為一種方法論和認識論,其啟示是多方面的:一是分形整體與局部形態的相似,啟發人們通過認識部分來認識整體,從有限中認識無限;二是分形揭示了介於整體與部分、有序與無序、復雜與簡單之間的新形態、新秩序;三是分形從一特定層面揭示了世界普遍聯系和統一的圖景。
由於這種特徵,使得分形理論在量化投資中得到了廣泛的應用,主要可以用於金融時序數列的分解與重構,並在此基礎上進行數列的預測。
6.隨機過程
隨機過程(Stochastic Process)是一連串隨機事件動態關系的定量描述。隨機過程論與其他數學分支如位勢論、微分方程、力學及復變函數論等有密切的聯系,是在自然科學、工程科學及社會科學各領域中研究隨機現象的重要工具。隨機過程論目前已得到廣泛的應用,在諸如天氣預報、統計物理、天體物理、運籌決策、經濟數學、安全科學、人口理論、可靠性及計算機科學等很多領域都要經常用到隨機過程的理論來建立數學模型。
研究隨機過程的方法多種多樣,主要可以分為兩大類:一類是概率方法,其中用到軌道性質、隨機微分方程等;另一類是分析的方法,其中用到測度論、微分方程、半群理論、函數堆和希爾伯特空間等,實際研究中常常兩種方法並用。另外組合方法和代數方法在某些特殊隨機過程的研究中也有一定作用。研究的主要內容有:多指標隨機過程、無窮質點與馬爾科夫過程、概率與位勢及各種特殊過程的專題討論等。
其中,馬爾科夫過程很適於金融時序數列的預測,是在量化投資中的典型應用。
現階段量化投資在基金投資方面使用的比較多,也有部分投資機構合券商的交易系統應用了智能選股的技術。
⑧ 如何對數據進行量化分析
對事物進行量化處理,最主要是建立一個合理的維度,達到這個度就怎樣,沒到這個度又怎樣。每個公司的情況不一樣,有些大公司的員工只做一件事情也有的製作半件的都有,而在一些剛創業起步,50人以內的公司,很多都是一人兼多職的。
因此如果沒有一個好的合理的維度去定這個事物的數據,做的事情多的員工就會慢慢的沒有積極性,對公司是不利的。比如說100萬以下是正常要求,100-500萬是一個一級維度,在這個維度里繼續拿出多出的部分進行大比例分配給業務員,如100萬的是2%提成,多出的按3%提成。
還有就是產品的單價是50元低價給到業務員,如果業務員賣出的產品比50高,就將高出的部分再進行50%或者更多的獎勵,相信業務員都會盡最大努力去銷售。再對每個單和每個月每個季度對每個業務員進行一次考核,符合管理規定的積一個維度,後面的都按維度來進行資金待遇分配。
相關信息
量化分析就是將一些不具體,模糊的因素用具體的數據來表示,從而達到分析比較的目的。人類對於股市波動規律的認知,是一個極具挑戰性的世界級難題。量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
雖然量化分析可以幫助我們更加方便和直觀地衡量風險和收益,但需要強調指出的是,美國華爾街頂級量化金融大師、哥倫比亞大學著名教授伊曼紐爾·德曼,在《數學建模如何誘騙了華爾街》一文中,毫無忌諱地承認根本不可能(通過數理分析方法)發明出一個能夠預測股票價格將會如何變化的模型。
⑨ 什麼是量化分析法
量化分析法是對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。重復進行定量風險分析反映出來的趨勢可以指出需要增加還是減少風險管理措施,它是風險應對計劃的一項依據,並作為風險監測和控制的組成部分。
溫馨提示:以上解釋僅供參考。
應答時間:2021-08-02,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html
⑩ 什麼是量化分析法
量化分析法是對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。重復進行定量風險分析反映出來的趨勢可以指出需要增加還是減少風險管理措施,它是風險應對計劃的一項依據,並作為風險監測和控制的組成部分。