❶ 告訴大家幾種修整金剛石砂輪的妙招
摘要 用白剛玉砂輪可以修整金剛石砂輪:
❷ 軸承滾道磨削加工
磨削主要是切入磨和擺動磨兩種
切入磨:通過修整器(金剛筆或、金剛滾輪修正)修整砂輪形狀,垂直於被切削麵進行磨削。
擺動磨:讓砂輪繞軸線擺動,通過橡膠砂輪的自銳性,自動修型而進行的磨削。
1、砂輪需修整原因:在磨削過程中,砂輪片的磨粒在摩擦、擠壓作用下,它的稜角逐漸磨圓變鈍,或者在磨韌性材料時,磨屑常常嵌塞在砂輪表面的孔隙中,使砂輪片表面堵塞,最後使砂輪片喪失切削能力。
這時,砂輪片與工件之間會產生打滑現象,並可能引起振動和出現雜訊,使磨削效率下降,表面粗糙度變差。同時由於磨削力及磨削熱的增加,會引起工作變形和影響磨削精度,嚴重時還會使磨削表面出現燒傷和細小裂紋。
此外,由於砂輪片硬度的不均勻及磨粒工作條件的不同,使砂輪片工作表面磨損不均勻,各部位磨粒脫落多少不等,致使砂輪片喪失外形粘度影響工件表面的形狀精度及表面粗糙度。
2、可以用砂輪修整器來進行修整。砂輪修整器是用於手動平磨、萬能工具磨及各種平面磨床、曲線磨床上,修整由直線和園弧組成的各種砂輪截形的專用機床附件。
修整方法有砂輪修整有車削、用金剛石滾輪、磨削和滾軋等方法。
(3)精密軸承磨削金剛滾輪修整工藝優化方法研究擴展閱讀:
砂輪修整器包含有:萬能砂輪修整器、透視砂輪修整器、萬能透視砂輪修整器、角度砂輪修整器、常規砂輪修整器等。
使用注意事項:
1、使用時,應將砂輪修整器放在機床的磁力吸盤上(或緊固在工作台上),以底座的一個側面定位(或校正),調整機床砂輪中心高度與金剛刀或凹凸不同的圓弧。
2、為保證修整器正常工作,應在使用中保持擺動、轉動、移動等部件的靈活、可靠。為此應適時清洗、注油並防止磕碰與銹蝕現象的發生。
❹ 告訴大家幾種修整金剛石砂輪的妙招
目前業者一般使用的砂輪修整方法有:氧化鋁削銳棒、鑽石修刀,鉬、紅銅、軟鋼等無動力同方向煞車式削整器等工具。這幾種方式修整的不利之處在於耗時會破壞砂輪整體結構,除了會降低砂輪使用壽命,在大尺寸砂輪、寬邊砂輪、極薄砂輪及極細粒度的削整,不易獲得良好的修整精度。
另種快速修整的方式動力式金剛石砂輪修整器。
如台灣宏富信砂輪削整器採用游離磨料滾動交叉方式修整,以柔克剛,不會破壞砂輪的整體結構。
可修整半圓,同時完成兩個角度。修整精度、真圓度與平坦度均在0.1μm以內。修正、修銳一次完成,較一般修整方式快20倍以上。適用修整砂輪:金剛石砂輪、鑽石砂輪、CBN砂輪、樹脂砂輪、金屬砂輪。
修整器適用外圓磨床、平面磨床。
❺ 軸承加工論文怎麼寫
對於套圈,影響FAG軸承振動最為嚴重的也是溝道波紋度和表面粗糙度。國內外大量軸承加工論文試驗表明:保持架、套圈、鋼球的加工質量對軸承振動具有不同程度的影響,其中鋼球的加工質量對軸承振動影響最明顯,其次是套圈的加工質量,最主要影響因素是鋼球和套圈的圓度、波紋度、表面粗糙度、表面磕碰傷等。
我國鋼球產品最突出的問題是振動值離散大,表面缺陷嚴重(單點、群點、凹坑等),盡管表面粗糙度、尺寸、形狀、誤差都不低於圈外水平,但合套後軸承振動值高,甚至產生異音,主要問題是波紋度沒有控制(無標准、無合適測試分析儀器),但最根本的措施是要降低磨削超精過程中的波紋度,同時說明機床的抗振性差,砂輪、研磨盤、冷卻液、工藝參數均存在問題;另一方面要提高管理水平,避免磕碰傷、劃傷、燒傷等隨時機性質量問題。
例如,中小型深溝球軸承內外溝道圓度大於2μm時,將對SKF軸承振動產生明顯影響,內外溝道波紋度大於0.7μm時,軸承振動值隨波紋度增加而增加,溝道嚴重磕傷可使振動上升4dB以上,甚至出現異音。
提高精給系統的進給解析度,降低進給慣性;主軸動靜剛度及其速度特性對低雜訊球軸承磨削振動影響很大,剛度越高,磨削速度對磨削力的變化越不敏感,磨削系統振動越小;無論是鋼球還是套圈,波紋度產生於磨削加工,超精研雖然可以改善波紋度並降低粗糙度,避免隨機性磕碰傷,主要有兩方面措施:
一是降低滾動表面磨削超精時的振動,獲得良好的表面加工形狀精度和表面紋路質量為降低振動,磨超機床必須具有良好的抗振性,床身等重要結構件具有吸振性,超精機床的油石振盪系統具有良好的抗振動性能;提高磨削速度,國外磨削6202外滾道普遍採用6萬電主軸,磨削速度60m/s以上,國內一般低得多,主要受主軸及主軸承性能的限制。在高速磨削時,磨削力小,磨削變質層薄,不容易燒傷,又可以提高加工精度和效率,對低雜訊球軸承影響很大;提高主軸軸承支剛性,採用隨機動平衡技術,提高磨削主軸的抗振性。INA軸承國外磨頭振動速度(如Gamfior)約為國內一般主軸的十分之一;提高砂輪油石的切削性能及修整質量至關重要。我國目前砂輪油石主要問題是組織結構均勻性差,嚴重影響低雜訊球軸承磨超加工質量;充分冷卻,提高過濾精度;合理的磨超加工工藝參數和加工流程是不可忽視的因素,磨削留量要小,形位公差從嚴,中小型球軸承外徑不宜用超精研,粗精磨超不宜分開,以保證良好的表面質量。
二是提高加工基準面精度,降低磨超加工過程中的誤差復映外徑與端面是磨超加工過程中的定位基準。外徑對溝道超精的誤差復映是通過外徑對溝磨,溝磨對溝超的誤差復映間接傳遞的。如果工件在傳遞過程中產生磕碰傷,將直接復映到滾道加工表面上,影響NSK軸承振動。所以必須採取以下措施:提高定位基準表面形狀精度;加工過程中傳遞平穩,無磕碰傷;毛坯留量形位誤差不能過大,特別是在留量較小時,過大誤差會造成終磨和超精結束時形狀精度尚未改善到最終的質量要求,嚴重影響加工質量的一致性。
從上面分析不難看出:隨著工業先進國家主機技術不斷提高,聯線越來越簡單,逐步減少或不用主動測量和機外檢測;由高性能、高穩定性機床系統組成的自動線方式磨超加工低雜訊球軸承最合適,可以避免磕碰傷,降低傳遞誤差,排除人工因素,提高加工效率和質量一致性,降低生產成本,提高企業效益。
如何降低球軸承雜訊呢?應從以下兩方面著手努力:
(一)製造工藝。工藝流程精化,主要指工藝流程盡可能短,工序加工合並,生產無中間庫存,有效降低影響低雜訊球NTN軸承性能工藝因素;生產潔凈化,這是一個系統的技術,包括磨削液、超精液、清洗液、空氣、高壓空氣、生產環境等技術工藝;自動化,從車加工到裝配全過程自動化,少人或無人化;規模化,此類軸承特別是靜音球軸承,必須形成大規模化,才能具備全球市場競爭能力。
(二)裝備。高速磨削、電主軸精度、剛度、壽命以及各種完善的檢測保護性能對磨削加工精度與效率起主要作用;磨床技術,國外內圓磨床一般都具備高速磨削,交流伺服控制,進給解析度0.25μ,全自動簡易操作,自診斷功能等;超精技術,主要以日本大阪精機為代表的無心支承兩工位超精和以德國梯倫豪斯為代表的液壓定心四工位超精兩種方式;在線檢測技術,二十世紀八十年代以來,日本軸承工業以主動測量機外反饋控制的自動磨超短線應用最為普遍。我國以此方式構成的磨超自動線應用也比較成熟,目前國內已有100條左右。無心外圓磨床,圓外(KOYO、MIKROSA等)普遍採用滾動TIMKEN軸承砂輪主軸單元,具有高剛度、高精度、長壽命、裝卸方便、使用可*等一系列優點;床身具有阻尼衰減減特性;進給採用高精度微動交流伺服系統,穩定的傳動交流變頻導輪調整系統,可具備在線隨機智能化測量,可實現CBN砂輪磨削等,可實現自動聯線,圓度可達0.3μm,尺寸分散可達3μm。
平面磨床,國外雙端(如KOYO、Landis Gardner)面磨床主軸都普遍採用高精度、高剛度滾動NACHI軸承主軸單元砂輪軸系統,油霧潤滑。以Gardner技術為例,該公司研究生產系統裝備已有九十多年歷史,可磨削軸承、陶瓷、玻璃、橡膠、塑料等材料。主要技術有自動砂輪修整和補償,砂輪磨頭進給以伺服電機絲杠同軸結構,砂輪向內外快速同步進給,進給精度可達到0.25μm,機身放置在兩個水平墊塊和平衡器上,平衡器具有自平衡支承桿,可自動調整與兩個水平墊塊成一水平面,使機床得到一個穩固的支承效果,平衡器重點是在維持砂輪軸同心度,增加修整砂輪間隔時間,工件進給有旋轉式、往復式、貫穿式和特殊四種形式,可使用超級磨料砂輪,金剛石砂輪和CBN磨削,磨削精度高、穩定性好,極長的砂輪使用壽命和方便的操作調整,可以根據加工要求專門配製磨料、結合劑、結構(圓環、鈕狀或環節狀),從而達到最佳磨削效果,平行差及平面度達1μm。本文地址: http://www.nskfag.org/news/201105_36756.html
❻ 軸承內圓磨各項問題如何解決
1.內圓磨削方法
(1)普通內圓磨床的磨削方法 普通內圓磨床是生產中應用最廣的一種,磨削時,根據工件的外形和尺寸不同,可採用縱磨法、橫磨法,有些普通內圓磨床上備有專門的端磨裝置,可在一次裝夾中磨削內孔和端面,這樣不僅輕易保證內孔和端面的垂直度,而且生產效率較高。
(2)無心內圓磨床磨削
磨削時,砂輪除了完成主運動ns外,還作縱向進給運動fa和周期性橫向進給運動fr。加工結束時,壓緊輪沿箭頭A方向擺開,以便裝卸工件。這種磨削方法適用於大批大量生產中,外圓表面已精加工的薄壁工件,如軸承套等。
2.內圓磨削的工藝特點及應用范圍
內圓磨削與外圓磨削相比,加工條件比較差,內圓磨削有以下一些特點:
(1)砂輪直徑受到被加工孔徑的限制,直徑較小。砂輪很輕易磨鈍,需要經常修整和更換,增加了輔助時間,降低了生產率。
(2)砂輪直徑小,即使砂輪轉速高達每分鍾幾萬轉,要達到砂輪圓周速度25~30m/s也是十分困難的,由於磨削速度低,因此內圓磨削比外圓磨削效率低。
(3)砂輪軸的直徑尺寸較小,而且懸伸較長,剛性差,磨削時輕易發生彎曲和振動,從而影響加工精度和表面粗糙度。內圓磨削精度可達IT8~IT6,表面粗糙度Ra值可達0.8~0.2μm。
(4)切削液不易進進磨削區,磨屑排除較外圓磨削困難。
固然內圓磨削比外圓磨削加工條件差,但仍然是一種常用的精加工孔的方法。特別適用於淬硬的孔、斷續表面的孔(帶鍵槽或花鍵槽的孔)和長度較短的精密孔加工。磨孔不僅能保證孔本身的尺寸精度和表面質量,還能進步孔的位置精度和軸線的直線度;用同一砂輪,可以磨削不同直徑的孔,靈活性大。內圓磨削可以磨削圓柱孔(通孔、盲孔、門路孔)、圓錐孔及孔端面等。
3.普通內圓磨床
磨削時,砂輪軸的旋轉為主運動,頭架帶動工件旋轉運動為圓周進給運動,工作台帶動頭架完成縱向進給運動,橫向進給運動由砂輪架沿滑鞍的橫向移動來實現。磨錐孔時,需將頭架轉過相應角度。
❼ 精密交叉滾子軸承生產中機床砂輪出現振動如何調整
精密交叉滾子軸承一般用於精密數控轉台、醫療器械、測量儀器等設備,對軸承精度和壽命要求極高,洛陽佰納軸承專業生產各種型號精密交叉滾子軸承,在交叉滾子軸承生產方面積累了大量的經驗,技術精湛。軸承生產過程中砂輪震動問題是影響零件加工精度的一個特重要因素,所以了解如何克服磨床砂輪震動問題非常必要,下面佰納工程師就此問題做以下詳述:
軸承磨削屬於精加工,磨削時砂輪與零件接觸部分將進行高速磨削,所產生的磨削熱及機械力相當大,如果砂輪或軸承安裝不到位,固定不穩將造成砂輪和零件間震動增大,產生砂輪花甚至燒傷,因此避免砂輪震動的首要問題點就是:
1、電磁吸盤與工件的接觸是否良好;
2、工件支撐是否良好;
3、砂輪是否平衡。前兩點不難理解,這也是一個熟練磨工必須掌握的技能。調整工件和支撐十分重要,在此不再贅述;
砂輪平衡,主要可分為以下步驟:調平衡→安裝砂輪→試轉→修圓→拆卸→調平衡→安裝砂輪→試轉→修圓(至無振動為止,否則繼續調平),在設計生產中,新砂輪往往需要反復平衡3次以上才可用於工件磨削,對於直徑600mm以上的砂輪,振動量將增加,必須用專用水平儀調至穩定才能使用。以交叉滾子軸承為例,其滾道為90度直角形狀(如左圖),磨削時砂輪還必須注意角度問題,佰納軸承為測量滾道角度,專門設計了九十度直角樣板,調整砂輪平衡後必須實際磨削並用樣板比對,才能避免磨削過程中振動發生,保證軸承加工的精度。
綜上所述,影響交叉滾子軸承生產中機床砂輪震動的主要問題可概括為:安裝問題和修整問題,只有保證安裝才有一個好的開始,只有不斷修整才可彌補磨削損耗造成的精度喪失,當然,造成此類問題的原因還有好多,希望專業人士批評指點。
❽ 金剛石滾輪的注意事項
(1) 金剛石的粒度較被修整砂輪的粒度應粗一號,還要選擇金剛石顆粒尺寸接近一致,顆粒形狀近似球形,常用粒度為36 # ~100 # 。(2) 通常採用滾輪與砂輪接觸點處線速度方向同向、滾輪線速度與砂輪線速度之比( qd 值) 取+ 0. 3~ + 0. 7 較好,不得超過+ 1;修整時滾輪切入量以砂輪每轉切入0. 5~1 μm 為宜,每次修整砂輪的總量應為0. 02~0. 04 mm;光修時間盡量壓縮。(3) 金剛石滾輪的製造誤差應小於工件公差的1/ 2 左右,滾輪孔與安裝軸承的配合間隙為2~4 μm。(4) 可採用天然或人造金剛石,人造金剛石必須採用高強度等級鑽石,如磨鋼專用金剛石SCD或高強度金剛石SMD。(5) 滾輪製造時,一般精度的滾輪可用外鍍法和燒結法,高精度和復雜型面滾輪應用內鍍法製造,同時進行磨削修整。(6) 金剛石滾輪修整砂輪時必須遵守快進(不能碰上砂輪) →慢進(按需要的切入速度進給) →光修→退出的動作程序,不得錯步,否則滾輪壽命難以保證。
❾ 有關精密加工技術的論文
超精密加工與超高速加工技術
一、技術概述
超高速加工技術是指採用超硬材料的刃具,通過極大地提高切削速度和進給速度來提高材料切除率、加工精度和加工質量的現代加工技術。
超高速加工的切削速度范圍因不同的工件材料、不同的切削方式而異。目前,一般認為,超高速切削各種材料的切速范圍為:鋁合金已超過1600m/min,鑄鐵為1500m/min,超耐熱鎳合金達300m/min,鈦合金達150-1000m/min,纖維增強塑料為2000-9000m/min。各種切削工藝的切速范圍為:車削700-7000m/min,銑削300-6000m/min,鑽削200-1100m/min,磨削250m/s以上等等。
超高速加工技術主要包括:超高速切削與磨削機理研究,超高速主軸單元製造技術,超高速進給單元製造技術,超高速加工用刀具與磨具製造技術,超高速加工在線自動檢測與控制技術等。
超精密加工當前是指被加工零件的尺寸精度高於0.1μ m,表面粗糙度Ra小於0.025μ m,以及所用機床定位精度的解析度和重復性高於0.01μ m的加工技術,亦稱之為亞微米級加工技術,且正在向納米級加工技術發展。
超精密加工技術主要包括:超精密加工的機理研究,超精密加工的設備製造技術研究,超精密加工工具及刃磨技術研究,超精密測量技術和誤差補償技術研究,超精密加工工作環境條件研究。
二、現狀及國內外發展趨勢
1.超高速加工
工業發達國家對超高速加工的研究起步早,水平高。在此項技術中,處於領先地位的國家主要有德國、日本、美國、義大利等。
在超高速加工技術中,超硬材料工具是實現超高速加工的前提和先決條件,超高速切削磨削技術是現代超高速加工的工藝方法,而高速數控機床和加工中心則是實現超高速加工的關鍵設備。目前,刀具材料已從碳素鋼和合金工具鋼,經高速鋼、硬質合金鋼、陶瓷材料,發展到人造金剛石及聚晶金剛石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦隨著刀具材料創新而從以前的12m/min提高到1200m/min以上。砂輪材料過去主要是採用剛玉系、碳化硅系等,美國G.E公司50年代首先在金剛石人工合成方面取得成功,60年代又首先研製成功CBN。90年代陶瓷或樹脂結合劑CBN砂輪、金剛石砂輪線速度可達125m/s,有的可達150m/s,而單層電鍍CBN砂輪可達250m/s。因此有人認為,隨著新刀具(磨具)材料的不斷發展,每隔十年切削速度要提高一倍,亞音速乃至超聲速加工的出現不會太遙遠了。
在超高速切削技術方面,1976年美國的Vought公司研製了一台超高速銑床,最高轉速達到了20000rpm。特別引人注目的是,聯邦德國Darmstadt工業大學生產工程與機床研究所(PTW)從1978年開始系統地進行超高速切削機理研究,對各種金屬和非金屬材料進行高速切削試驗,聯邦德國組織了幾十家企業並提供了2000多萬馬克支持該項研究工作,自八十年代中後期以來,商品化的超高速切削機床不斷出現,超高速機床從單一的超高速銑床發展成為超高速車銑床、鑽銑床乃至各種高速加工中心等。瑞士、英國、日本也相繼推出自己的超高速機床。日本日立精機的HG400III型加工中心主軸最高轉速達36000-40000r/min,工作台快速移動速度為36~40m/min。採用直線電機的美國Ingersoll公司的HVM800型高速加工中心進給移動速度為60m/min。
在高速和超高速磨削技術方面,人們開發了高速、超高速磨削、深切緩進給磨削、深切快進給磨削(即HEDG)、多片砂輪和多砂輪架磨削等許多高速高效率磨削,這些高速高效率磨削技術在近20年來得到長足的發展及應用。德國Guehring Automation公司1983年製造出了當時世界第一台最具威力的60kw強力CBN砂輪磨床,Vs達到140-160m/s。德國阿享工業大學、Bremen大學在高效深磨的研究方面取得了世界公認的高水平成果,並積極在鋁合金、鈦合金、因康鎳合金等難加工材料方面進行高效深磨的研究。德國Bosch公司應用CBN砂輪高速磨削加工齒輪齒形,採用電鍍CBN砂輪超高速磨削代替原須經滾齒及剃齒加工的工藝,加工16MnCr5材料的齒輪齒形,Vs=155m/s,其Q達到811mm3/mm.s,德國Kapp公司應用高速深磨加工泵類零件深槽,工件材料為100Cr6軸承鋼,採用電鍍CBN砂輪,Vs達到300m/s,其Q`=140mm3/mm.s,磨削加工中,可將淬火後的葉片泵轉子10個一次裝夾,一次磨出轉子槽,磨削時工件進給速度為1.2m/min,平均每個轉子加工工時只需10秒鍾,槽寬精度可保證在2μ m,一個砂輪可加工1300個工件。目前日本工業實用磨削速度已達200m/s,美國Conneticut大學磨削研究中心,1996年其無心外圓高速磨床上,最高砂輪磨削速度達250m/s。
近年來,我國在高速超高速加工的各關鍵領域如大功率高速主軸單元、高加減速直線進給電機、陶瓷滾動軸承等方面也進行了較多的研究,但總體水平同國外尚有較大差距,必須急起直追。
2.超精密加工
超精密加工技術在國際上處於領先地位的國家有美國、英國和日本。這些國家的超精密加工技術不僅總體成套水平高,而且商品化的程度也非常高。
美國是開展超精密加工技術研究最早的國家,也是迄今處於世界領先地位的國家。早在50年代末,由於航天等尖端技術發展的需要,美國首先發展了金剛石刀具的超精密切削技術,稱為「SPDT技術」(Single Point Diamond Turning)或「微英寸技術」(1微英寸=0.025μ m),並發展了相應的空氣軸承主軸的超精密機床。用於加工激光核聚變反射鏡、戰術導彈及載人飛船用球面非球面大型零件等等。如美國LLL實驗室和Y-12工廠在美國能源部支持下,於1983年7月研製成功大型超精密金剛石車床DTM-3型,該機床可加工最大零件?2100mm、重量4500kg的激光核聚變用的各種金屬反射鏡、紅外裝置用零件、大型天體望遠鏡(包括X光天體望遠鏡)等。該機床的加工精度可達到形狀誤差為28nm(半徑),圓度和平面度為12.5nm,加工表面粗糙度為Ra4.2nm。該機床與該實驗室1984年研製的LODTM大型超精密車床一起仍是現在世界上公認的技術水平最高、精度最高的大型金剛石超精密車床。
在超精密加工技術領域,英國克蘭菲爾德技術學院所屬的克蘭菲爾德精密工程研究所(簡稱CUPE)享有較高聲譽,它是當今世界上精密工程的研究中心之一,是英國超精密加工技術水平的獨特代表。如CUPE生產的Nanocentre(納米加工中心)既可進行超精密車削,又帶有磨頭,也可進行超精密磨削,加工工件的形狀精度可達0.1μ m ,表面粗糙度Ra<10nm。
日本對超精密加工技術的研究相對於美、英來說起步較晚,但是當今世界上超精密加工技術發展最快的國家。日本的研究重點不同於美國,前者是以民品應用為主要對象,後者則是以發展國防尖端技術為主要目標。所以日本在用於聲、光、圖象、辦公設備中的小型、超小型電子和光學零件的超精密加工技術方面,是更加先進和具有優勢的,甚至超過了美國。
我國的超精密加工技術在70年代末期有了長足進步,80年代中期出現了具有世界水平的超精密機床和部件。北京機床研究所是國內進行超精密加工技術研究的主要單位之一,研製出了多種不同類型的超精密機床、部件和相關的高精度測試儀器等,如精度達0.025μ m的精密軸承、JCS-027超精密車床、JCS-031超精密銑床、JCS-035超精密車床、超精密車床數控系統、復印機感光鼓加工機床、紅外大功率激光反射鏡、超精密振動-位移測微儀等,達到了國內領先、國際先進水平。航空航天工業部三零三所在超精密主軸、花崗岩坐標測量機等方面進行了深入研究及產品生產。哈爾濱工業大學在金剛石超精密切削、金剛石刀具晶體定向和刃磨、金剛石微粉砂輪電解在線修整技術等方面進行了卓有成效的研究。清華大學在集成電路超精密加工設備、磁碟加工及檢測設備、微位移工作台、超精密砂帶磨削和研拋、金剛石微粉砂輪超精密磨削、非圓截面超精密切削等方面進行了深入研究,並有相應產品問世。此外中科院長春光學精密機械研究所、華中理工大學、沈陽第一機床廠、成都工具研究所、國防科技大學等都進行了這一領域的研究,成績顯著。但總的來說,我國在超精密加工的效率、精度可靠性,特別是規格(大尺寸)和技術配套性方面與國外比,與生產實際要求比,還有相當大的差距。
超精密加工技術發展趨勢是:向更高精度、更高效率方向發展;向大型化、微型化方向發展;向加工檢測一體化方向發展;機床向多功能模塊化方向發展;不斷探討適合於超精密加工的新原理、新方法、新材料。21世紀初十年將是超精密加工技術達到和完成納米加工技術的關鍵十年。
三、「十五」目標及主要研究內容
1.目標
超高速加工到2005年基本實現工業應用,主軸最高轉速達15000r/min,進給速度達40-60m/min,砂輪磨削速度達100-150m/s;超精密加工基本實現亞微米級加工,加強納米級加工技術應用研究,達到國際九十年代初期水平。
2.主要研究內容
(1)超高速切削、磨削機理研究。對超高速切削和磨削加工過程、各種切削磨削現象、各種被加工材料和各種刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工藝參數優化等進行系統研究。
(2)超高速主軸單元製造技術研究。主軸材料、結構、軸承的研究與開發;主軸系統動態特性及熱態性研究;柔性主軸及其軸承的彈性支承技術研究;主軸系統的潤滑與冷卻技術研究;主軸的多目標優化設計技術、虛擬設計技術研究;主軸換刀技術研究。
(3)超高速進給單元製造技術研究。高速位置晶元環的研製;精密交流伺服系統及電機的研究;系統慣量與伺服電機參數匹配關系的研究;機械傳動鏈靜、動剛度研究;加減速控制技術研究;精密滾珠絲杠副及大導程絲杠副的研製等。
(4)超高速加工用刀具磨具及材料研究。研究開發各種超高速加工(包括難加工材料)用刀具磨具材料及制備技術,使刀具的切削速度達到國外工業發達國家90年代末的水平,磨具的磨削速度達到150m/s以上。
(5)超高速加工測試技術研究。對超高速加工機床主軸單元、進給單元系統和機床支承及輔助單元系統等功能部位和驅動控制系統的監控技術,對超高速加工用刀具磨具的磨損和破損、磨具的修整等狀態以及超高速加工過程中工件加工精度、加工表面質量等在線監控技術進行研究。
(6)超精密加工的加工機理研究。「進化加工」及「超越性加工」機理研究;微觀表面完整性研究;在超精密范疇內的對各種材料(包括被加工材料和刀具磨具材料)的加工過程、現象、性能以及工藝參數進行提示性研究。
(7)超精密加工設備製造技術研究。納米級超精密車床工程化研究;超精密磨床研究;關鍵基礎件,如軸系、導軌副、數控伺服系統、微位移裝置等研究;超精密機床總成製造技術研究。
(8)超精密加工刀具、磨具及刃磨技術研究。金剛石刀具及刃磨技術、金剛石微粉砂輪及其修整技術研究。
(9)精密測量技術及誤差補償技術研究。納米級基準與傳遞系統建立;納米級測量儀器研究;空間誤差補償技術研究;測量集成技術研究。
(10)超精密加工工作環境條件研究。超精密測量、控溫系統、消振技術研究;超精密凈化設備,新型特種排屑裝置及相關技術的研究
希望能幫到你.哈哈!
本人就是從事精密機械生產,模具加工的,轉載地址:來源:http://www.china-machine.com/adv_technology/key_tec
http://www.chinainfo.gov.cn/data/200108/1_20010803_9963.html
❿ 軸承磨削工藝的常見問題和解決方案是什麼
軸承是當代機械設備中一種重要零部件,它的主要功能是支撐機械旋轉體,降低其運動過程中的摩擦系數,並保證其回轉精度。滾動軸承一般由外圈、內圈、滾動體和保持架四部分組成。在軸承製造過程中,如何採用新工藝以高精度、高效率、低投入地完成磨削,便是軸承磨削的主要任務。
軸承磨削工藝的常見問題和解決方案:
一、軸承磨削工藝的常見問題
(1)軸承精度問題
軸承精度主要由機床精度、夾具精度和磨削工藝參數綜合形成的。所以合理確定數控機床磨削坐標,砂輪修正坐標的位置也是推進工件質量的重要參數。
(2)軸承燒傷問題
軸承磨削過程中工藝參數不合理或毛坯的尺寸精度控制不好會出現磨削燒傷的現象,這種磨削燒傷產生的主要因素有砂輪的線速度低、切削力低、砂輪和工件表面法向受力大等。
(3)軸承裂紋問題
當磨削參數選擇不合理,磨削後中孔座面磨削表面會產生裂紋或細微裂紋,使軸承的疲勞強度下降。
二、軸承磨削工藝的解決方案
(1)軸承的裝夾方式
軸承磨削時以大外圓和工藝角定位,可以避免中孔座面磨削軸向跳動。
(2)軸承的切削餘量
切削餘量是保證高效高精度軸承磨削的一個重要參數,通常餘量都控制在微米級別。
(3)軸承的磨具選擇
磨具選用時應能滿足高速磨削工藝,以保證砂輪在磨削的過程中磨屑不會粘堵砂輪,保持良好的自銳性。
(4)軸承的磨削轉速
工件回轉轉速和軸承磨削表面的直徑有關,工件的轉速會對磨削切痕和表面粗糙度產生較大的影響,過低的轉速會使磨削表面產生波紋,增大表面殘余應力,轉速過高會會引起磨削表面燒傷。
三、軸承磨削技術的發展趨勢
(1)高速軸承磨削技術
高速磨削能提高質量和效率,在高速磨削中砂輪除應具有足夠的強度外,還需要保證具有良好的磨削性能才能獲得高磨效果。
(2)新型軸承磨削砂輪
新型砂輪的製造技術、修整技術、專用軸承磨床和磨削油等正在進行技術升級改造以便滿足磨削工藝的進步。
(3)砂輪自動平衡技術
機床砂輪上直接安裝上機械的或其他方式的自動平衡裝置,推動了磨削技術的發展,同時能夠極大限度地延長砂輪、修整用金剛石及主軸軸承壽命,減小機床振動,長期保持機床的原有精度。
(4)軸承磨削數控技術
數控技術在高轉速及低速運轉都能保證定位精度,可以完成快跳、快趨、修整、,使機床進給機構大大簡化,性能可靠性大大提高。
四、高速軸承磨削油的研製
高速磨削油在軸承磨削製造工藝中起到了關鍵性的作用,良好的冷卻性能和極壓抗磨性能對於砂輪的使用壽命和軸承精度的提升有了質的飛躍。
(1)磨削油的極壓性能
專用的磨削油含有硫化極壓抗磨添加劑成分,可以有效的保護磨具,提高工藝精度。
(2)磨削油的化學性能
專用的磨削油與菜籽油、機械油、再生油相比,具有良好的化學穩定性,不會對設備、人體、環境產生危害。
(3)磨削油的其他性能
專用的磨削油在粘度、閃點、傾點、導熱等方面均通過嚴格的測試,以滿足各種工藝需求。