⑴ spss差异显着性分析怎么样
打开数据,依次点击:analyse--regression,打开多元线性回归对话框。将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
方差分析
用于正态分布、方差齐性的多组比较,即多个处理平均数之间差异的显着性检验。常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显着性,再进行组间的两两比较,组间比较用q检验或LST检验等。
⑵ 什么事显着性分析
1.概念与意义 在假设检验中,显着性水平显着性水平显着性水平显着性水平((((Significant level,,,,用用用用α表示表示表示表示))))的确定是假设检验中至关重要的问题。 显着性水平是在原假设成立时检验统计量的值落在某个极端区域的概率值。因此,如果取α= 0.05,如果计算出的p值小于α ,则可认为原假设是一个不可能发生的小概率事件。当然,如果真的发生了,则犯错误的可能性为5%。显然,显着性水平反映了拒绝某一原假设时所犯错误的可能性,或者说, α是指拒绝了事实上正确的原假设的概率。 2.通常的取值 α值一般在进行假设检验前由研究者根据实际的需要确定。 常用的取值是0.05或0.01。对于前者,相当于在原假设事实上正确的情况下,研究者接受这一假设的可能性为95%;对于后者,则研究者接受事实上正确的原假设的可能性为99%。 显然,降低α值可以减少拒绝原假设的可能性。因此,在报告统计分析结果时,必须给出α值。 3.进行统计推断 在进行假设检验时,各种统计软件均会给出检验统计量观测值以及原假设成立时该检验统计量取值的相伴概率(即检验统计量某特定取值及更极端可能值出现的概率,用p表示)。 p值是否小于事先确定的α值,是接受或拒绝原假设的依据。 如果p值小于事先已确定的α值,就意味着检验统计量取值的可能性很小,进而可推断原假设成立的可能性很小,因而可以拒绝原假设。相反,如果p值大于事先已确定的α值,就不能拒绝原假设。 在计算机技术十分发达,以及专业统计软件功能十分强大的今天,计算检验统计量及其相伴概率是一件十分容易的事情。 然而,在20世纪90年代以前,只有服从标准正态分布的检验统计量,人们可以直接查阅事先准备好的标准正态分布函数表,从中获得特定计算结果的相伴概率。而对于的服从t-分布、F-分布、卡方分布或其它特殊的理论分布的检验统计量(大多数的假设检验是这样),人们无法直接计算相伴概率。人们通常查阅各类假设检验的临界值表进行统计推断。这些表格以自由度和很少的几个相伴概率(通常为0.1、0.05和0.01)为自变量,以检验统计量的临界值为函数排列。 在进行统计推断时,人们使用上述临界值表根据事先确定的显着性水平,查阅对应于某一自由度和特定相伴概率的检验统计量的临界值,然后将所计算出的检验统计量与该临界值相比较。如果检验统计量的计算值大于临界值,即实际的相伴概率小于事先规定的显着性水平,便可拒绝原假设。否则,可接受原假设。 4.举例 在根据显着性水平进行统计推断时,应注意原假设的性质。 以二元相关分析为例,相关分析中的原假设是“相关系数为零”(即2个随机变量间不存在显着的相关关系)。如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如0.05),就可以认为“相关系数为零”的可能性很低, 既2个随机变量之间存在显着的相关关系。 在正态分布检验时,原假设是“样本数据来自服从正态分布的总体”。此时,如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如0.05),则表明数据不服从正态分布。只有p值高于α值时,数据才服从正态分布。这与相关分析的假设检验不同。 5.作者在描述相关分析结果时常有的失误 仅给出相关系数的值,而不给出显着性水平。这就无法判断2个随机变量间的相关性是否显着。 有时作者不是根据显着性水平判断相关关系是否显着,而是根据相关系数的大小来推断(相关系数越近1,则相关关系越显着)。问题是,相关系数本身是一个基于样本数据计算出的观测值,其本身的可靠性尚需检验。 此外,作者在论文中常常用“显着相关”和“极显着相关”来描述相关分析结果,即认为p值小于0.05就是显着相关关系(或显着相关),小于0.01就是极显着相关关系(或极显着相关)。 在假设检验中,只有 “显着”和 “不显着”,没有“极显着”这样的断语。只要计算出的检验统计量的相伴概率(p值)低于事先确定的α值,就可以认为检验结果“显着”(相关分析的原假设是“相关系数为零”,故此处的“显着”实际意味着“相关系数不为零”,或说“2个随机变量间有显着的相关关系”);同样,只要计算出的检验统计量的相伴概率(p值)高于事先确定的α值,就可以认为检验结果“不显着”。 在进行相关分析时,不能同时使用0.05和0.01这2个显着性水平来决定是否拒绝原假设,只能使用其中的1个。
⑶ 为什么要进行显着性检验
看因素之间的相互作用是不是明显 简单的说
⑷ 为什么要对相关系数进行显着性检验
进行显着性检验是为了消除Ⅰ类错误和Ⅱ类错误。
确定两个变量相关之后,两个变量之间的相关是否是因为偶然因素产生的,如果是因为抽样造成的,就没有必要去探究,如果不是因为机遇造成的,就说明其背后存在一个系统的因素,即必然性,这个时候我们就有必要去深究其显着性。
通常情况下,α水平属于第一类错误。第一类错误是零假设为真却被错误拒绝的概率。第二类错误(是零假设为误却被错误接受的概率或是研究假设为真却被拒绝的概率。
如果P值小于某个事先确定的水平,理论上则拒绝零假设,反之,如果P值大于某个事先确定的水平,理论上则不拒绝零假设。
(4)使用显着性分析方法的优点扩展阅读
显着度检验的六步:
(1) 研究假设H1 ,即假设两个变量之间有关,注意这里的有关是指有系统的关系,即显着关系;
(2)零假设 H0 ,又被学者称为虚无假设,即两个变量之间没有显着关系;
(3)根据变量类型选择检验方法;
(4)决定愿意承担多大的犯一类错误的风险,这与是否放弃零假设有关;
(5)根据样本计算犯一类错误的风险
一类错误:即弃真,当零假设为真时,却拒绝了零假设,二类错误:即纳伪,当零假设为假时,却接受了零假设;
(6)参照第4—5步决定是否放弃零假设
当根据样本计算的犯一类错误的风险小于愿意承担的犯一类错误的风险的时候,则接受零假设,反之则拒绝零假设。
⑸ 阐述置信区间法和显着性检验法的不同之处
幽门螺杆菌可引起多种胃病,包括胃炎、胃溃疡、十二指肠溃疡、非溃疡性消化不良、胃癌等。因此,根除幽门螺杆菌已经成为现代消化道疾病治疗的重要措施。为明确患者有无幽门螺杆菌的感染,临床上需要一种敏感性高、特异性强、快速、简单、安全、廉价的Hp诊断方法,也就是碳14呼气试验。该检查以及无痛、无创、快速简便、无交叉感染的优点,被国内外专家一致推荐为诊断Hp的金标准,在临床上已被广泛推广应用。
⑹ 什么是显着性检验显着性检验的目的是什么怎样表述"显着"与"不显着
1、看是否独立;2、看是否服从正态分布;3、方差是否具有齐性 如果都满足,做两独立样本资料t检验就没问题了
⑺ 如何进行显着性分析
利用SPSS进行统计检验
在教育技术研究中,经常需要利用不同的教学媒体或教学资源对不同的对象进行教学改革试验,但教学试验的总体往往都有较大数量,限于人力、物力与时间,通常都采用抽取一定的样本作为研究对象,这样,就存在样本的特征数量能否反映总体特征的问题,也存在着两种不同的样本的数量标志的参数是否存在差异的问题,这就必需对样本量数进行定量分析与推断,在教育统计学中称为“统计检验”。
一、统计检验的基本原理
统计检验是先对总体的分布规律作出某种假说,然后根据样本提供的数据,通过统计运算,根据运算结果,对假说作出肯定或否定的决策。如果现要检验实验组和对照组的平均数(μ1和μ2)有没有差异,其步骤为:
1.建立虚无假设,即先认为两者没有差异,用表示;
2.通过统计运算,确定假设成立的概率P。
⒊ 根据P 的大小,判断假设是否成立。如表6-12所示。
二、大样本平均数差异的显着性检验——Z检验
Z检验法适用于大样本(样本容量小于30)的两平均数之间差异显着性检验的方法。它是通过计算两个平均数之间差的Z分数来与规定的理论Z值相比较,看是否大于规定的理论Z值,从而判定两平均数的差异是否显着的一种差异显着性检验方法。其一般步骤:
第一步,建立虚无假设,即先假定两个平均数之间没有显着差异。
第二步,计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。
(1)如果检验一个样本平均数()与一个已知的总体平均数()的差异是否显着。其Z值计算公式为:
其中是检验样本的平均数;
是已知总体的平均数;
S是样本的方差;
n是样本容量。
(2)如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显着。其Z值计算公式为:
其中,1、2是样本1,样本2的平均数;
是样本1,样本2的标准差;
是样本1,样本2的容量。
第三步,比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显着性关系表作出判断。如表6-13所示。
第四步,根据是以上分析,结合具体情况,作出结论。
【例6-5】某项教育技术实验,对实验组和控制组的前测和后测的数据分别如表6-14所示,比较两组前测和后测是否存在差异。
由于n>30,属于大样本,应采用Z检验。由于这是检验来自两个不同总体的两个样本平均数,看它们各自代表的总体的差异是否显着,所以采用双总体的Z检验方法。
计算前测Z的值
= -0.658
∵=0.658<1.96
∴ 前测两组差异不显着。
再计算后测Z的值
= 2.16
∵ = 2.16>1.96
∴ 后测两组差异显着。
三、小样本平均差异的显着性检验——t检验
t检验是用于小样本(样本容量小于30)时,两个平均值差异程度的检验方法。它是用t分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显着。其一般步骤如下:
第一步,建立虚无假设,即先假定两个总体平均数之间没有显着差异。
第二步,计算统计量t值,对于不同类型的问题选用不同的统计量计算方法。
(1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量t值的计算公式为:
(2)如果要评断两组样本平均数之间的差异程度,其统计量t值的计算公式为:
第三步,根据自由度df= n-1,查t值表,找出规定的t理论值(见附录)并进行比较。理论值差异的显着水平为0.01级或0.05级。不同自由度的显着水平理论值记为t (df)0.01和t (df)0.05
第四步,比较计算得到的t值和理论t值,推断发生的概率,依据表6-15给出的t值与差异显着性关系表作出判断。
第五步,根据是以上分析,结合具体情况,作出结论
⑻ 置信区间、显着性检验和统计学意义
置信区间、显着性检验和统计学意义
置信区间
估计参数真值所在的范围通常以区间的形式给出,同时还给出此区间包含参数真值的可信程度,这种形式的估计称为区间估计,这样的区间称为置信区间。
对于任意参数θ在可能的取值范围内,P{θ1<θ<θ2}≥1-α,则称随机区间(θ1,θ2)是参数θ的置信水平为1-α的置信区间,θ1和θ2分别称为置信水平为1-α的双侧置信区间的置信下限和置信上限,1-α称为置信水平。
对于特殊问题,我们关心的是重点在于参数θ的上限或下限,比如对于设备的使用寿命,关心平均寿命的“下限”;对于药品中杂质含量,关心平均含量的“上限”。对于任意参数θ在可能的取值范围内,P{θ<θ2}≥1-α或P{θ>θ1}≥1-α,则称随机区间(-∞,θ2)或(θ1,∞)是参数θ的置信水平为1-α的单侧置信区间,θ1和θ2分别称为置信水平为1-α的单侧置信下限和单侧置信上限。
显着性检验
统计推断(statistical inference),是根据带随机性的观测数据(样本)以及问题的条件和假定(模型),而对未知事物,作出的以概率形式表述的推断。主要包括参数估计和假设检验。
参数估计包括点估计和区间估计。点估计包括矩估计法和最大似然估计法。
假设检验:在总体的分布函数完全未知或只知其形式、但不知其参数的情况,为了推断总体的某些未知特性,提出某些关于总体的假设。再根据样本,对所提出的假设作出是接受,还是拒绝的决策。假设检验是作出这一决策的过程。
对两者有无显着性差异的判断是在显着性水平α之下作出的。显着性水平α为满足原假设时,发生不可能事件的概率的上限。如果样本发生的概率小于显着性水平α,证明小概率事件(不可能事件)发生了,样本与假设的差异是显着的,故拒绝原假设;否则,接受原假设。显着性水平α即为拒绝原假设的标准。P值和sig值表示在原假设的条件下,样本发生的概率,也是拒绝原假设的依据。
由于检验法则是根据样本作出的,总有可能作出错误的决策。在原假设为真时,可能犯拒绝原假设的错误,称这类“弃真”的错误为第一类错误;在原假设为不真时,有可能接受原假设,称这类“取伪”的错误为第二类错误。
一般来说,我们总是控制第一类错误的概率,使它不大于显着性水平α。α的大小视具体情况而定,通常取0.1,0.05,0.01,0.005 等值。只对第一类错误的概率加以控制,而不考虑第二类错误的概率的检验,称为显着性检验。区分双边假设检验和单边假设检验。
无论是显着性相关,还是显着性差异,显着性表示的意义为出现该情况的概率大于1-α。
Z检验:单个总体,方差已知,关于均值的检验。
T检验:单个总体,方差未知,关于均值的检验;两个总体,方差相同,关于均值差的检验;两个总体,方差未知,配对出现,关于均值差的检验(配对t检验:配对求差值,构成单个总体)。
卡方检验:单个总体,均值未知,关于方差的检验。
F检验:两个总体,均值未知,关于方差的检验。
T检验、F检验和统计学意义(P值或sig值)
1. T检验和F检验的由来
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设nullhypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显着性(sig)就是出现目前样本这结果的机率。
2. 统计学意义(P值或sig值)
19楼空间eo-{y"k8w%p~;u结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
通常,原假设为无差别,若P值小于边界水平(比如0.05),小概率事件发生了,推翻原假设,认为差别是显着的。
所有的检验统计都是正态分布的吗
并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
⑼ 显着性差异分析
先将全部平均数从大到小顺序排列,然后在最大的平均数上标上字母 a ,并将该平均数依次和其以下各平均数相比,凡差异不显着的都标字母 a ,直至某一个与之相差显着的平均数则标以字母 b 。再以该标有 b 的平均数为标准,与上方各个比它大的平均数比,凡不显着的也一律标以字母 b ;再以标有 b 的最大平均数为标准,与以下各未标记的平均数比,凡不显着的继续标以字母 b ,直至某一个与之相差显着的平均数则标以字母 c ……如此重复下去,直至最小的一个平均数有了标记字母为止。这样各平均数间,凡有一个标记相同字母的即为差异不显着,凡具不同标记字母的即为差异显着。在实际应用时,一般以大写字母 A.B.C…… 表示α =0.01 显着水平,以小写字母 a.b.c…… 表示α =0.05 显着水平。
⑽ 假设检验有什么优点啊
假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显着差异,是否应当接受原假设选择的一种检验方法。 用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显着差异。从这个意义上,假设检验又称为显着性检验。