A. 用配方法求代数式最大值 最小值的方法
配方法的应用配方法的地位:判断一个式子的值的正负是比较大小、判断一元二次方程根的情况等很多数学问题常要用到的,基本途径是①因式分解,②配方,特别是配方法在初中数学中涉及二次的问题时应用非常广泛。除了判断正负,配方法还解决了最值、不大于(或不小于)一个常数等等问题。因此学会配方法及有意识地应用配方法将式子变形,从而解决问题在初中阶段非常重要。教学目标:1. 理解用配方法变形成a(x+m)2+n的式子可以求其取值范围、判断其符号进而得到其最值;2. 配方法解决问题的多样性,开拓了学生的视野,打开了一个神奇的数学之窗。教学重点: 解决判断式子符号、求最值等问题。教学难点:1.理解如何判断型如a(x+m)2+n的式子的取值范围; 2.理解可以用判断型如a(x+m)2+n的式子的取值范围来解决不同的问题。 教学过程:一、复习引入:(设计意图:复习配方法,比较解方程时配方和代数式的配方的异同点,学生易犯的错误是代数式的配方中将二次项系数象解方程那样除掉)1. 用配方法解方程:2x2-4x+16=02. 将2x2-4x+16配方得 二、典型例题:(设计意图:使学生理解并掌握配方后判断符号的方法)例1. 不论x取任何实数,证明:代数式x2-4x+13的值恒大于零。学生易想到x2-4x+13=x2-4x+4+9 =(x-2)^2+9 ———学生上手很快,但很多并未意识到这就是在应用配方法强调为什么(x-2)^2+9恒大于零,格式: ∵(x-2)^2≥0 ———非负数的性质 ∴(x-2)^2+9≥9 ———得到取值范围 ∴(x-2)^2+9>0 ———判断正负 即x2-4x+13的值恒大于0归纳总结:配方后,可以判断a(x+m)2+n的值的范围,从而进一步判断值的正负。 例2. 设M=x2-8x+22,N= -x2+6x-3,比较M与N的大小关系。方法一(比差法):M-N=( x2-8x+22)-( -x2+6x-3)=2x2 -14x+25 ———判断正负的途径:因式分解或配方=2(x-7/2)^2+1/4 ———配方同例1一样分析,得M-N>0,———得到取值范围,判断正负从而M>N.方法二:∵M=x2-8x+22=(x-4)2+6 N= -x2+6x-3= -(x-3)2+6 ———配方同例1一样分析,得M,N的取值范围:M≥6,N≤6———判断取值范围但当x=4时M=6;x=3时,N=6,因此,不可能同时M=N ∴M>N例3. 关于x的一元二次方程x2-(k+2)x+2k-1=0,试证明无论k取何值时,方程总有两个不相等的实数根。 三、变式训练:(设计意图:举一反三)1. 求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根,2. 若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式⊿=b2-4ac和完全平方式M=(2at+b)2的关系是( )(A)⊿=M (B)⊿>M (C)⊿ (D)大小关系不确定3.证明:3x2 -2x+4的值不小于11/3。———分析例1中得到的取值范围(x-2)2+9≥9 帮组学生理解此题,并为拓展做准备四、拓展提高:(设计意图:学生还没有学二次函数,因此求最值应该是难点,理解取值范围所表达的意义,也为二次函数的学习做准备)1. 已知x为实数。求y= x2-6x+15的最小值。2. 已知x为实数,x= 时,y= -x2-4x+10有最大值。3. 用24米长的篱笆材料,一边利用墙,墙的最大可利用长度为12米,围成一个中间有隔断(隔断垂直于墙)的矩形仓库,假设矩形垂直于墙的一边为x米,(1) 用含x的代数式表示矩形的面积;(2) 什么时候矩形的面积等于45平方米?(3) 你能用非负数的性质和配方法确定什么时候矩形有最大面积吗?五、课堂总结:用配方法将一个二次三项式写成型如a(x+m)2+n的式子,可以用非负数的性质得到取值范围a(x+m)2+n≥n,a>0(或a(x+m)2+n≤n,a<0),从而可判断符号,解决最值等问题。六、作业: 虽然刚学配方法,但涉及到的数学问题已成系列。牢牢抓住“配方”和用非负数得到的“取值范围”这两个点去分析典型例题,先重点突破判断符号问题,在变式训练中又加入第3题,进一步分析用非负数得到的“取值范围”的意义,再进一步思考拓展最小值与“取值范围”的关系,达到一题多练的效果。
B. 到底什么是配方法,一元二次方程用配方法怎样解
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
例: 解方程:3
(变形:方程左边分解因式,右边合并同类项;)
x+4/3=± 5/3(开方:根据平方根的意义,方程两边开平方;)
x+4/3=5/3 或 x+4/3=-5/3( 求解:解一元一次方程;)
所以x1=1/3, x2=-3 ( 定解:写出原方程的解)
(2)为什么用配方法解最值问题扩展阅读
1、配方法解一元二次方程的口诀:一除二移三配四开方。
2、配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方。
3、配方法的理论依据是完全平方公式。
配方法的应用
1、用于比较大小
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
C. 初三数学怎样用配方法求最大值和最小值
使用配方法。就是把这个分式化成()*n+、、、、、
应该说一个分式只有最大值或者最小值,因为例如
把x^2+2x+3配方
=x^2+2x+1+2
=(x+1)^2+2
由这个配方后的结果来看。这个分式只有最小值,因为(x+1)^2只有最小值,而“+2
”是不得变的。
即当x=-1时,也是此分式的最小值,就是2。
无论这个分式是怎样的。只要根据完全平方的思路去化,化出一个完全平方后再加一串的东东数字,使他等于原分式。
D. 解初中竞赛最值问题常用到的方法和定理大神们帮帮忙
1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
E. 配方法可以解决三类问题
答:
1)
3x²+6x-5
=3(x²+2x+1)-3-5
=3(x+1)²-8
>=0-8
=-8
最小值为-8
2)利用配方法可以解决最小值或者最大值问题、解方程问题、解不等式问题,等等
3)
-x²-2x-2
=-(x²+2x+1) -1
=-(x+1)²-1
F. 求函数最值问题常用的10种方法,高考填空,大题每年
一、 配方法主要运用于二次函数或可转化为二次函数的函数解题过程中要注重自变量的取值范围.例1已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0,求函数y的最小值. 分析:将函数表达式按ex+e-x配方,转化为关于为变量ex+e-x的二次函数解:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2, 令t=ex+e-x,f(t)=t2-2at+2a2-2, ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域[2,∞),∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2当a>2时,ymin=f(a)=a2-2.评注:利用二次函数的性质求最值要注意到自变量的取值范围.和对称轴与区间的相对位置关系. 二. 不等式法运用不等式法求最值必须关注三个条件即”一正二定三相等”.例2 求函数y=(ax2+x+1)/(x+1)(x>-1且a>0)的最小值. 解:y=(ax2+x+1)/(x+1)=ax+a/(x+1)+(1-a)=a(x+1)+ a/(x+1)+1-2a≥2+1-2a=1当a(x+1)=a/(x+1),即x=0时等号成立,∴ymin=1.三. 换元法主要有三角换元和代数换元换两种.用换元法时,要特别关注中间变量的取值范围.四. 数形结合法主要适用于具有几何意义的函数,通过函数的图象求最值. 例5 已 知x2+y2-2x+4y-20=0求x2+y2的最值. 分析:本题已知条件转化为(x-1)2+(y+2)2=25,可用三角代换转化为三角函数最值问题处理,也可借助几何图形数形结合处理. 解:作x2+y2-2x+4y-20=0的图形,它是圆心在P(1,-2)半径为5的圆,依题意有x2+y2=2x-4y+20,设x2+y2=z,则z=2x-4y+20即y=x/2 + (20-z)/4,其图形是斜率为1/2且与已知圆相交的一簇平行线,于是求z的最值问题就是求这簇平行线中在y轴的截距最大或最小问题.由平面几何知识知,圆心P(1,-2)到切线2x-4y+20-z=0的距离小于或等于半径,即≤5即|30-z|≤10故30-10≤z≤30+10,故z1=30-10为最小值,z2=30+10为最大值.即x2+y2最大值为30+10,最小值为30-10.五.函数的单调性法先判明函数给定区间上的单调性,而后依据单调性求函数的最值.例6 已知函数f(x)定义域R,为对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)且x>0时f(x)<0,f(1)=-2试判断在区间[-3,3] 上f(x)是否有最大值和最小值?如果有试求出最大值和最小值,如果没有请说明理由. 解:令x1=x2=0,则f(0)=f(0)+f(0) ∴f(0)=0, 令x1=x, x2=-x则f(x)+f(-x)= f(0)=0 ∴f(x)=-f(-x), ∴f(x)为奇函数. 设x1,x2∈R,且x10, ∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,∴ f(x2)0对一切x∈R均成立.函数表达式可化为(y-1)x2+(3y+3)x+4y-4=0,当y≠1时∵x∈R,上面的一元二次方程必须有实根,∴△=(3y+3)2-4(y-1)(4y+4)≥0 解得:1/7≤y≤7,(y≠1)当y=1时,x=0.故ymax=7,ymin=1/7 例8 求函数y=x+的最大值和最小值七. 导数法设函数f(x)在[a,b]上连续在(a,b)上可导,则f(x)在[a,b]上的最大值和最小值应为f(x)在(a,b)内的各极值与f(a),f(b)中的最大值和最小值例9 动点P(x,y)是抛物线y=x2-2x-1上的点,o为原点,op2当x=2时取得极小值,求,op2的最小值祝学习进步@
G. 用配方法求代数式的最大或最小值
用配方法求代数式的最值,通常是对一元二次多项式而言的,即满足ax^2+bx+c(a,b不等于零)的形式.基本思路就是根据完全平方公式找到一个完全平方式,使之展开之后满足其中的一次项和二次项.举一个简答的例子就明白了:
例如:求x^2-4x+9的最小值
因为x^2-4x=(x-2)^2-4
所以原式=(x-2)^2-4+9
=(x-2)^2+5
因为(x-2)^2为非负数,所以原式在x=2时取得最小值为0+5=5
对于复杂的式子同样适用,例如:求3x^2-7x-5的最值
因为3x^2-7x=(√3x)^2-2*√3x*[7/(2√3)]+ [7/(2√3)]^2-[7/(2√3)]^2
=[√3x-7/(2√3)]^2-[7/(2√3)]^2
所以原式=[√3x-7/(2√3)]^2-[7/(2√3)]^2-5
显然当√3x=7/(2√3)即x=7/6时,原式有最小值为0-[7/(2√3)]^2-5=-109/12
H. 配方法怎么解最小值和最大值
一,二次项系数<0,求最大值
先将多项式合并同类向后按降幂排列,提出二次项负号后的二次项和一次项。在括号里加上一次项系数一半的平方,再减去二次项系数一般的平方,进行配方。。例如:求-x^2+6x+8的最大值。
原式=-(x^2-6x)+8
=-(x^2-6x+9-9)+8
=-(x^2-6x+9)+9+8
=-(x-3)^2+15
因为-(x-3)^2≤0
所以当x=3时,sax原式=15
二,二次项系数>〇,求最小值
合并同类项,按降幂排列。加上再减去一次项系数一半的平方,进行配方,由任何实数的平方都大于等于0得最小值、
例如:求x^2+6x+8的最小值
解:原式=x^2+6x+9-9+8
=(x+3)^2-1
∵(x+3)^2≥0
∴当(x+3)^2=0时,原式最小=-1
还要注意在括号前是负号时括号里要变号~
I. 怎么用配方法解函数y=x+1/x(x>0)的最小值啊(初三内容)
因为x>0所以配方的时候要使得完全平方内的数为x减去一个正数,这样就使得x为这个数值的时候有最小值了,方法如下:
y=x+1/x=(√x)^2+(1/√x)^2=(√x)^2-2+(1/√x)^2+2=(√x-1/√x)^2+2
所以当√x=1/√x,即是x=1的时候,有最小值2
回答完毕,谢谢!
J. 初三数学怎样用配方法求最大值和最小值
(1)首先要有二次函数的一般式y=ax²+bx+c(a≠0),如果没有,则要先列出原始解析式,并整理得到二次函数的一般式y=ax²+bx+c(a≠0);
(2)通过“配方法”将二次函数的一般式y=ax²+bx+c(a≠0)变成顶点式y=a(x-h)²+k;
(3)从顶点式y=a(x-h)²+k中得到产生最值的条件和最值:当x=h时,y最大或最小=k。
例如:
y=(2+x)(100-10x)【原始解析式】
=200-20x+100x-10x²
=-10x²+80x+200【整理成一般式y=ax²+bx+c(a≠0)】
=-10(x²-8x)+200
=-10(x²-8x+4²-4²)+200
=-10【(x-4)²-4²】+200
=-10(x-4)²+160+200
=-10(x-4)²+360【配方法变成顶点式y=a(x-h)²+k】
则:当x=4时,y最大=360。【得到产生最值的条件“x=h”和最值“y最大或最小=k”】