导航:首页 > 研究方法 > emc分析方法pdf

emc分析方法pdf

发布时间:2022-05-29 13:38:56

A. PCB EMC设计分析85 PCB的EMC性能与关键元器件位置

同上

B. 电磁兼容(EMC)的概念及设计方法

电磁兼容即EMC,它包括EMI和EMS,前者包括传导和辐射,是指本产品对其它电器甚至是人类所产生的电磁干扰,后者是电磁忍受,即,本产品所能承受的别的产品产生的干扰的忍受能力.
设计时根据不同的产品有不同的设计方案,但是一般都采用电感和电容进行调整...

C. 求助,EMC模型如何分析

用eviews计算,看各参数的T检验及F检验是否通过,如果F检验通过,但是有两个以上T检验不通过,就有很大的可能是多重共线性了。还有就是看模型中所用的变量之间会不会明显相关,就像,货币供应量和工资之类的。可以尝试直接联立两个变量的方差,看变量间的R平方是不是很接近1,越接近1,说明多重共线性越明显。希望对你有用

D. 什么是EMC

EMC指的是对电子产品在电磁场方面干扰大小(EMI)和抗干扰能力(EMS)的综合评定,是产品质量最重要的指标之一,电磁兼容的测量由测试场地和测试仪器组成。(网络的)

通俗点讲,EMC就是模拟你实际情况下,你的产品会受到的伤害,或者你的产品会对其他产品或者人的伤害,比如说静电测试,是模拟实际人体拿钥匙对产品进行放电;浪涌是模拟雷击等等,EMC的任何一项测试都是有实际意义的。

希望我的回答对你有所帮助!

E. EMC测试中不确定度如何计算

摘要: 本文为了介绍 EMC 测量不确定度的 分析计算方法 ,首先 介绍了 测量 不确定度与误差的基本概念和它们之间的 异同;然后 根据 JJF1059-1999《测量不确定度评定与表示》,在辐射骚扰分析与计算基础上,以传导骚扰的测量不确定度为例说明了简化计算方法。
关键词: 误差;不确定度;概念; 计算
中图分类号: TN912 文献标识码: A 文章编号: 1003-0107(2004)08

一、前 言
测量不确定度是测量系统最基本也是最重要的特性指标 ,是测量质量的重要标志。一个 EMC 完整的测量过程 ,引起测量不确定度的因素有很多,测量系统的概念不只局限于测量仪器、测量设备的范畴,而是指用来对被测量值赋值的测量操作程序、测量人员、设备、环境及软件等要素的综合,是获得测量结果的整个过程。 EMC 测量的准确性咋样?即 EMC 测量不确定度究竟咋样?大家非常关心。

二、误差和 测量 不确定度 比较
1、误差的基本概念 : 测量时,由于种种原因,被测物理量的测量结果总是偏离真值。这种偏差就叫做误差。 误差如果按性质及特点可分为三类:系统误差,随机误差,粗大误差。由于在实际测量中如发现结果属于粗大误差即删除不用,误差 按性质就分为随机误差和系统误差两类 。
2、测量不确定度的基本概念 : 测量不确定度是说明测量值在测量结果附近分散性,意为对测量结果正确性的可疑程度, 与测量结果相联系的参数。 测量不确定度有两种表示方式:一是标准不确定度,二是扩展不确定度,大多数情况下,推荐使用扩展不确定度。扩展不确定度:它是确定测量结果区间的量,提高其置信水平,用标准偏差的倍数表示,将合成标准不确定度 u c 扩展k倍后得到。扩展不确定度U表示置信水平的区间半宽度。
实验标准差是分析误差的基本手段,也是不确定度理论的基础,从本质上说不确定度理论是在误差理论基础上发展起来的,其基本分析和计算方法是共通的。但测量不确定度与测量误差在概念上有许多差异,列表说明如下。

三、 评定 EMC 测量不确定度的三步曲
首先画出测试系统图,针对引起 EMC 测量不确定度的诸多因素 ,全面分析误差 源 ,从人、设备、法、环、软件五个方面找出所有误差 源; 同时,列出与这些误差 源 可能 相关的 六个测量系统评定指标:

这六个指标反映了测量系统不确定性的基本特征 ,实际上也就是误差 源 引起测量系统不确定度的主要原因。再次,选择适合各指标特征的不确定度评定方法 , 考虑误差源的概率分布, 分别将测量系统误差 源对应相关 指标转化为标准不确定度。第三,计算合成不确定度和 扩展 不确定度。 我们注意到以上提到的 误差 源及 转化后的不确定度分量 彼此独立,计算合成不确定度有以下公式:
通过计算和分析可以知道,假若只有两个分量,其中某个量小于另一量的三分之一,则计算时可以忽略这个量;假若有两个以上的分量,则在保留十分之一的较大分量前提下,计算时可以忽略小一个数量级的其它分量。

四、辐射骚扰场强的测量不确定度分析与计算
根据 JJF1059-1999《测量不确定度评定与表示》标准中对不确定度的定义和评定要求,我们对 本中心辐射骚扰场强测试系统在 5米法暗室中30MHz—1GHz 的 骚扰场强 测量不确定度进行评定。
根据 GB9254 辐射骚扰场强测试系统图 ,辐射骚扰场强测试的合成不确定度涉及EMI接收机R&S ESIB26、场地和天线及其他因素。
步骤一:定性 分析误差源及 不确定度分量

步骤二:定量 分析及 正确 计算 不确定度分量(上表中不确定度分量已知为“ 0”的不再计算)
表 2:误差 源对应 不确定度分量 计算

1、测量不确定度的A类分量
观测样品采用某公司的液晶显示器,操作人员不变, 5米法测试。 每次测量完毕,接收机和样品复位至初始状态,关闭电源,拆除全部连接电缆,其目的在于使每次测量结果彼此独立。某频率点 辐射骚扰场强的准峰值观测值:

测量距离时尺子未充分拉直或拉直过度以及测量人员的读数导致的样品位置误差是随机误差,已经在上述的测量操作重现性 A类评定中考虑, 这里的样品位置误差是假使样品按照标准认真正确布置,但由于桌子高度误差、测量距离的尺子刻度误差 所产生的 。正常情况下, 5米测试距离时,样品位置距离误差不会超过0.03米,即测试距离极限在4.97米与5.023米之间。应按测量结果平均值 估算场强 测量最大误差 。
远场概念下,场强与距离成反比,场强 测量最大误差 :

五、 EMI注入电源骚扰电压不确定度简化计算
根据 GB9254 注入电源骚扰电压 测试系统图 , 注入电源骚扰电压测试的合成不确定度涉及 EMI接收机R&S ESIB26、场地 (屏蔽室) 和 LISN 人工 电源网络 及其他因素。

六、 测量结果的正确表述 和意义
测量不确定度是对测量结果质量的定量表征,完整的测量结果至少含有两个基本量:一是被测量的 测量值或 最佳估计值(测量结果是在重复观测的条件下确定时);二是描述该测量结果分散性的量,即测量结果不确定度( 需要有两个数表示,一个是置信概率,另一个是对应该置信概率的区间宽度)。
例如:我们可以说前述的 辐射骚扰场强的准峰值 测定为 50.8(dB m v/m) 加或减 3.2 (dB m v/m),有 95% 的置信概率。可以写成: 50.8 ± 3.2 (dB m v/m), 置信概率为 95% 。这个表述是说我们对 辐射骚扰场强的准峰值 在 47.6到 54 (dB m v/m) 之间有 95% 的把握。
同样 , 前述的 注入电源骚扰电压的准峰值 测定为 56.2(dB m v) 加或减 1.8(dB m v),有 95% 的置信概率。可以写成: 56.2 ± 1.8 (dB m v), 置信概率为 95% 。这个表述是说我们对 注入电源骚扰电压的准峰值 在 54.4到 58.0 (dB m v) 之间有 95% 的把握。

由于计算得到的Re Ce测量结果不确定度满足下表要求
被测量测量频率本扩展不确定度大小关系CISPR规范扩展不确定度注入电源骚扰电压150kHz-30MHz1.8 dB小于3.6dB辐射骚扰场强30MHz-1GHz3.2 dB小于5.2dB

所以,在测量中判断测量结果是否符合限值要求,因按照下述方式判定:

如果测得的骚扰都不超过骚扰限值,则可以判定为合格;

如果测得的骚扰超过骚扰限值,则可以判定为不合格。

七、小结
测量不确定度的评定是 EMC测试中一项非常重要的内容,它定量反映测量结果正确性的可疑程度。测量不确定度分析 从人、设备、法、环、软件五个方面找出误差 源, 列出与误差 源 可能 相关的 六个指标,分别将误差 源对应相关 指标转化为不确定度分量 ,最后计算 扩展不确定度。 EMC测量不确定度的评定可以采取全面分析, 计算简化的方法:简化法则之一, 只考虑 误差源及 六个指标分析不确定度分量表中“ AA”栏对应的不确定度分量即可; 简化法则之二,对于 彼此独立的 不确定度分量, 假若只有两个分量,其中某个量小于另一量的三分之一,则计算时可以忽略这个量;假若有两个以上的分量,则在保留十分之一的较大分量前提下,计算时可以忽略小一个数量级的其它分量。
EMC 中主要的 测量不确定度来源为设备的精度,所以 EMC 设备精度越高越好, EMC 设备要定期计量检定。由于 在正常情况下,屏蔽室、暗室、天线、人工电源网络、功率吸收钳 这类设备 检测 费用较高、费时较长, 计量频次较低,所以 EMC 实验室 经常进行设备自我校验 , 合理安排系统预防性维护和纠正性维护 , 提高测量系统的有效性,就更加重要和必要。

参考文献:
[1] JJF1059-1999《测量不确定度评定和表示》 ;
[2] 测量不确定度表述导则ISO:1993(E);
[3] Guide to the expression of uncertainty in measurement [GUM]. BIPM, IEC, IFCC, ISO, IUPAC, OIML,1st dition,1995.《测量不确定度表示指南》 ;
[4] 刘智敏等,现代不确定度方法与应用;
[5] 陈卫斌,谈谈《测量不确定度评定与表示》的应用思路;
[6] 王池 李芳, 测量不确定度在流量领域的应用;
[7] CNAL/AR01:2002《认可程序规则》 ;
以上内容仅供参考、、

F. EMC电磁兼容设计与测试案例分析(第2版) 517275183 谢谢

G. 解决EMC问题,解决EMC问题的方法,怎么解决EMC问题

参考一下EMC疑问及对策 :
1. 在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10mV是多少dBmV? 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10mV是20dBmV。
2. 为什么频谱分析仪不能观测静电放电等瞬态干扰?
答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。而静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际的干扰情况。
3. 在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头?
答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。
4. 一台设备,原来的电磁辐射发射强度是300mV/m,加上屏蔽箱后,辐射发射降为3mV/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。
5. 设计屏蔽机箱时,根据哪些因素选择屏蔽材料?
答:从电磁屏蔽的角度考虑,主要要考虑所屏蔽的电场波的种类。对于电场波、平面波或频率较高的磁场波,一般金属都可以满足要求,对于低频磁场波,要使用导磁率较高的材料。
6. 机箱的屏蔽效能除了受屏蔽材料的影响以外,还受什么因素的影响? 答:受两个因素的影响,一是机箱上的导电不连续点,例如孔洞、缝隙等;另一个是穿过屏蔽箱的导线,如信号电缆、电源线等。 7. 屏蔽磁场辐射源时要注意什么问题?
答:由于磁场波的波阻抗很低,因此反射损耗很小,而主要靠吸收损耗达到屏蔽的目的。因此要选择导磁率较高的屏蔽材料。另外,在做结构设计时,要使屏蔽层尽量远离辐射源(以增加反射损耗),尽量避免孔洞、缝隙等靠近辐射源。 8. 在设计屏蔽结构时,有一个原则是:尽量使机箱内的电缆远离缝隙和孔洞,为什么?
答:由于电缆近旁总是存在磁场,而磁场很容易从孔洞泄漏(与磁场的频率无关)。因此,当电缆距离缝隙和孔洞很近时,就会发生磁场泄漏,降低总体屏蔽效能。

H. 怎样分析EMC测试曲线图

EMC测试曲线图 给你的是频谱的曲线,观察曲线是否是符合测试参考限值得标准,比较高的或者是尖刺,就是某些频率辐射比较大,可以通过计算得知是哪里产生的倍频来判断辐射产生的原因。

I. 高速电路PCB设计与EMC技术分析的目录

第一篇基础篇
第1章高速电路PCB概述
1.1高速信号
1.1.1高速的界定
1.1.2高速信号的频谱
1.1.3高速电路与射频电路的区别
1.2无源器件的射频特性
1.2.1金属导线和走线
1.2.2电阻
1.2.3电容
1.2.4电感和磁珠
1.3PCB基础概念
1.4高速电路设计面临的问题
1.4.1电磁兼容性
1.4.2信号完整性
1.4.3电源完整性
第2章高速电路电磁兼容
2.1电磁兼容的基本原理
2.1.1电磁兼容概述
2.1.2电磁兼容标准
2.1.3电磁兼容设计的工程方法
2.2电磁干扰
2.2.1电磁干扰概述
2.2.2电磁干扰的组成要素
2.3地线干扰与接地技术
2.3.1接地的基础知识
2.3.2接地带来的电磁兼容问题
2.3.3各种实用接地方法
2.3.4接地技术概要
2.4干扰滤波技术
2.4.1共模和差模电流
2.4.2干扰滤波电容
2.4.3滤波器的安装
2.5电磁屏蔽技术
2.5.1电磁屏蔽基础知识
2.5.2磁场的屏蔽
2.5.3电磁密封衬垫
2.5.4截止波导管
2.6PCB的电磁兼容噪声
2.6.1PCB线路上的噪声
2.6.2PCB的辐射
2.6.3PCB的元器件
2.7本章小结
第3章高速电路信号完整性
3.1信号完整性的基础
3.1.1信号完整性问题
3.1.2高速电路信号完整性问题的分析工具
3.2传输线原理
3.2.1PCB中的传输线结构
3.2.2传输线参数
3.2.3传输线模型
3.3时序分析
3.3.1传播速度
3.3.2时序参数
3.3.3时序设计目标和应用举例
3.4反射
3.4.1瞬态阻抗及反射
3.4.2反弹
3.4.3上升沿对反射的影响
3.4.4电抗性负载反射
3.5串扰
3.5.1串扰现象
3.5.2容性耦合和感性耦合
3.5.3串扰的模型描述
3.5.4串扰噪声分析
3.5.5互连参数变化对串扰的影响
3.6本章小结
第4章高速电路电源完整性
4.1电源完整性问题概述
4.1.1芯片内部开关噪声
4.1.2芯片外部开关噪声
4.1.3减小同步开关噪声的其他措施
4.1.4同步开关噪声总结
4.2电源分配网络系统设计
4.2.1PCB电源分配系统
4.2.2电源模块的模型
4.2.3去耦电容的模型
4.2.4电源/地平面对的模型
4.3本章小结
第5章去耦和旁路
5.1去耦和旁路特性
5.2去耦和旁路电路属性参数
5.2.1能量储存
5.2.2阻抗
5.2.3谐振
5.2.4其他特性
5.3电源层和接地层电容
5.4电容选择举例
5.4.1去耦电容的选择
5.4.2大电容的选择
5.4.3选择电容的其他考虑因素
5.5集成芯片内电容
5.6本章小结
第6章高速电路PCB的布局和布线
6.1走线与信号回路
6.1.1PCB的走线结构
6.1.2网络、传输线、信号路径和走线
6.1.3“地”、返回路径、镜像层和磁通最小化
6.2返回路径
6.2.1返回电流的分布
6.2.2不理想的参考平面
6.2.3参考平面的切换
6.2.4地弹
6.3高速PCB的叠层设计
6.3.1多层板叠层设计原则
6.3.2尽量使用多层电路板
6.3.36层板叠层配置实例
6.4高速PCB的分区
6.4.1高速PCB的功能分割
6.4.2混合信号PCB的分区设计
6.5高速PCB的元件布局
6.5.1布线拓扑和端接技术
6.5.2如何选择端接方式
6.5.3端接的仿真分析
6.6高速PCB布线策略和技巧
6.6.1过孔的使用
6.6.2调整走线长度
6.6.3拐角走线
6.6.4差分对走线
6.6.5走线的3?W原则
6.7本章小结
第二篇应用篇
第7章现代高速PCB设计方法及EDA
7.1现代高速PCB设计方法
7.1.1传统的PCB设计方法
7.1.2基于信号完整性分析的PCB设计方法
7.2高速互连仿真模型
7.2.1SPICE模型
7.2.2IBIS模型
7.2.3Verilog-AMS/VHDL-AMS模型
7.2.4三种模型的比较
7.2.5传输线模型
7.3常用PCB设计软件
7.3.1Protel
7.3.2OrCAD
7.3.3ZUKENCR
7.3.4CadenceAllegro系统互连设计平台
7.3.5MentorGraphicsPADS
7.4本章小结
第8章PowerLogic&PowerPCB——高速电路设计
8.1PADS软件套装
8.2PowerLogic——原理图设计
8.2.1PowerLogic的用户界面
8.2.2建立一个新的设计
8.2.3环境参数设置
8.2.4添加、删除和复制元件
8.2.5PADS元件库与新元件的创建
8.2.6建立和编辑连线
8.2.7在PowerLogic下的叠层设置
8.2.8在PowerLogic下定义设计规则
8.2.9输出网表到PCB
8.3PowerPCB——版图设计
8.3.1PowerPCB的用户界面
8.3.2设计准备
8.3.3单位设置
8.3.4建立板边框
8.3.5设置禁布区
8.3.6输入网表
8.3.7叠层设计
8.3.8定义设计规则
8.3.9颜色设置
8.4元件布局
8.4.1准备
8.4.2散开元器件
8.4.3设置网络的颜色和可见性
8.4.4建立元件组合
8.4.5原理图驱动布局
8.4.6放置连接器
8.4.7顺序放置电阻
8.4.8使用查找(Find)命令放置元件
8.4.9极坐标方式放置(RadialPlacement)元件
8.4.10布局完成
8.5布线
8.5.1布线准备
8.5.2几种布线方式
8.5.3布线完成
8.6定义分割/混合平面层
8.6.1选择网络并指定不同的显示颜色
8.6.2设置各层的显示颜色和平面层的属性
8.6.3定义平面层区域
8.6.4定义平面层的分隔
8.6.5灌注平面层
8.6.6初步完成PCB设计
8.7本章小结
第9章HyperLynx——信号完整性及EMC分析
9.1HyperLynx软件
9.2LineSim——布线前仿真
9.2.1利用LineSim进行反射分析
9.2.2利用LineSim进行EMC/EMI分析
9.2.3传输线损耗仿真
9.2.4利用LineSim进行串扰分析
9.3BoardSim——布线后分析
9.3.1生成BoardSim电路板
9.3.2BoardSim的批处理板级分析
9.3.3BoardSim的交互式仿真
9.3.4BoardSim端接向导
9.3.5BoardSim串扰分析
9.4本章小结
第10章实例——基于信号完整性分析的高速数据采集系统的设计
10.1系统组成
10.1.1AD9430芯片简介
10.1.2CPLD芯片简介
10.1.3USB2.0设备控制芯片——CY7C
10.1.4SDRAM
10.2基于信号完整性的系统设计过程
10.2.1原理图的信号完整性设计
10.2.2PCB的信号完整性设计
10.3设计验证
10.3.1差分时钟网络仿真
10.3.2数据通道仿真
10.4本章小结
附录A常用导体材料的特性参数
附录B常用介质材料的特性参数
附录C变化表
附录D国际单位的前缀
参考文献

J. 如何在产品设计中评估emc风险

这种方法依据的主线是对干扰共模电流的分析,这种共模电流以标准IEC61000-4-4 中的EFT/B脉冲或标准ISO7637中P3脉冲的测试原理为基础。它可以在电子产品与电子产品的开发流程融合在一起,通过每个步骤的EMC分析,指出现有产品EMC设计的风险,并给出解决方案或改进建议,以提高产品EMC测试的通过率,降低产品开发成本。实践证明,按照电快速瞬变脉冲群测试干扰原理为基础进行分析的结果,同样对其它高抗绕度测试项目及EMI也有有着重要的意义,如IEC61000-4-2, IEC61000 -4-3, IEC61000-4-4, IEC61000-4-6, IEC61000-4-12标准中所涉及的所有测试,传导骚扰和辐射发射测试,汽车电子中标准ISO10605、IS011452-2 、IS011452-3、IS011452-4、IS011452-5、IS011452-6、IS011452-7、CISPR25、S07637-3所涉及的测试及ISO7637-2中的P3a 、p3b波形的测试。

对于EMC设计的境界,会经一般会经历4个阶段:

整改阶段,此阶段是产品EMC设计的初步阶段,即产品进行EMC测试时,发现EMC问题,才通过各种临时措施使产品通过EMC测试。整改的概念与企业产品开发流程也不符合;
技术设计阶段。这个阶段,企业一般已经有了一定EMC的技术,并有时还会有专职的EMC工程师负责EMC工作,与其它开发人员一起在产品功能设计的同时,考虑EMC问题,但是还处于懵懂状态;
方法论阶段,将1,2阶段的整改和设计技术上升为一种方法论,通过此方法论可以很好的,系统的指导产品的设计,同时有不脱离产品实际;
仿真阶段,这是EMC设计技术的最高境界。

阅读全文

与emc分析方法pdf相关的资料

热点内容
疤痕妊娠怎么治疗方法 浏览:964
旅游心理学研究的主要方法有 浏览:557
如何用简单方法制作生根水 浏览:831
宝宝不拉大便有什么好方法 浏览:727
染发黑色的正确方法和步骤 浏览:892
施工安全带使用方法 浏览:930
顽固口臭的治疗方法 浏览:819
爪爪机的使用方法 浏览:284
坐月子疼痛正确方法 浏览:462
量内衣的正确方法图片 浏览:993
量角器的使用方法视频 浏览:675
如何改善屁股两边冰凉的方法 浏览:596
山东济南肿瘤医院癌症治疗方法 浏览:38
教你如何做冰激凌简单的方法 浏览:867
骨关节炎检查方法有哪些 浏览:769
取小标题的方法技巧 浏览:976
电动扳手的使用方法 浏览:440
rosien水光针使用方法 浏览:492
电焊检测尺的使用方法 浏览:64
炒田螺简单好吃的方法 浏览:781