Ⅰ 處理表面缺陷圖像用什麼濾波方法
圖像濾波
剛獲得的圖像有很多噪音。這主要由於平時的工作和環境引起的,圖像增強是減弱噪音,增強對比度。想得到比較干凈清晰的圖像並不是容易的事情。為這個目標而為處理圖像所涉及的操作是設計一個適合、匹配的濾波器和恰當的閾值。常用的有高斯濾波、均值濾波、中值濾波、最小均方差濾波、Gabor濾波。
由於高斯函數的傅立葉變換仍是高斯函數, 因此高斯函數能構成一個在頻域具有平滑性能的低通濾波器。可以通過在頻域做乘積來實現高斯濾波。均值濾波是對是對信號進行局部平均, 以平均值來代表該像素點的灰度值。矩形濾波器(Averaging Box Filter)對這個二維矢量的每一個分量進行獨立的平滑處理。通過計算和轉化 ,得到一幅單位矢量圖。這個 512×512的矢量圖被劃分成一個 8×8的小區域 ,再在每一個小區域中 ,統計這個區域內的主要方向 ,亦即將對該區域內點方向數進行統計,最多的方向作為區域的主方向。於是就得到了一個新的64×64的矢量圖。這個新的矢量圖還可以採用一個 3×3模板進行進一步的平滑。
中值濾波是常用的非線性濾波方法 ,也是圖像處理技術中最常用的預處理技術。它在平滑脈沖雜訊方面非常有效,同時它可以保護圖像尖銳的邊緣。加權中值濾波能夠改進中值濾波的邊緣信號保持效果。但對方向性很強的指紋圖像進行濾波處理時 ,有必要引入方向信息,即利用指紋方向圖來指導中值濾波的進行。
最小均方差濾波器,亦稱維納濾波器,其設計思想是使輸入信號乘響應後的輸出,與期望輸出的均方誤差為最小。
Gabor變換是英國物理學家 Gabor提出來的,由「測不準原理」可知,它具有最小的時頻窗,即Gabor函數能做到具有最精確的時間-頻率的局部化;另外, Gabor函數與哺乳動物的視覺感受野相當吻合,這一點對研究圖像特徵檢測或空間頻率濾波非常有用。恰當的選擇其參數, Gabor變換可以出色地進行圖像分割、識別與理解。如文獻提出的基於Gabor濾波器的增強演算法。
Ⅱ 三種常見的平滑濾波方法
三種常見的平滑濾波方法包括均值濾波、中值濾波和高斯濾波:
均值濾波:
中值濾波:
高斯濾波:
這三種濾波方法各有優缺點,在實際應用中需要根據具體需求和信號特性進行選擇。