A. 數學必修一中判斷函數的單調性方法。
1.
設f(x)=ax^2
bx
c,a≠0
f(0)=c=0
c=0
f(x
1)-f(x)=a(x
1)^2
b(x
1)-(ax^2
bx)
=a(2x
1)
b
=2ax
(a
b)
=2x
a=1
b=-1
f(x)=x^2-x;
2.
f(x)=x^2-x的圖像是頂點為(1/2,-1/4),開口向上的拋物線,
所以只要y=2x
m在(1/2,-1/4)下方即可,
2(1/2)
m<-1/4
m<-5/4
f(0)=c=1
f(x)=x^2-x
1
2.
頂點為(1/2,3/4),
只要y=2x
m在(1/2,3/4)下方即可,
2(1/2)
m<3/4
m<-1/4
設f(x)=x
√1
2x,x∈[-1/2,
∞)
取x1<x2,且x1、x2∈[-1/2,
∞),則x1-x2<0,√1
2x1-√1
2x2<0
∴f(x1)-f(x2)=(x1-x2)
(√1
2x1-√1
2x2)<0,即f(x1)<f(x2)
∴函數f(x)在[-1/2,
∞)是增函數。
∴最小值為-1/2
值域為[-1/2,
∞)
定義域:
明確幾種特殊函數的定義域如帶根的(大於等於零),未知數在分母的(不等於零),對數(大於零)等。值域:(1)配方法:適用於二次函數型(2)分離常數法:分子分母都有未知數例:y=(2x
1)/(x-3)
=[2(x-3)
7]/(x-3)
=2
7/(x-3)因為7/(x-3)不等於0所以y不等於2(3)反解法:例:y=(2x
1)/(x-3)
(y-2)x-3y-1=0所以x=(3y
1)/(y-2)所以y不等於2
f(x)=(ax
b)/(cx
d)f(x)不等於a/c
(4)判別式法:反解之後用判別式(5)換元法(6)圖像法
f(x)=(2x
4-5)/(x
2)=2-5/(x
2)x屬於[-5,-3]x
2必小於零則1/(x
2)在[-5,-3]上單調遞減則-5/(x
2)在[-5,-3]上單調遞增則2-5/(x
2)在[-5,-3]上單調遞增所以ymax=f(-3)=7ymin=f(-5)=11/3
【分析】判斷一個函數的奇偶性,首先判斷函數的定義域是否關於原點對稱,若不對稱,則非奇非偶;若對稱,則再判斷f(-x)與f(x)的關系,f(-x)=f(x)為偶,f(-x)=-f(x)為奇,否則為非奇非偶。
a.解:易知f(x)=sinx2定義域關於原點對稱,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)為偶函數。b.解:易知f(x)=tanx
tanx/2定義域為x不=π/2
kπ,關於原點不對稱,
所以f(x)為非奇非偶函數。c.解:f(x)=sinx
cosx定義域關於原點對稱,
又f(-x)=sin(-x)
cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)為非奇非偶函數。d.解:易知f(x)=1/3cosx/2定義域關於原點對稱,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)為偶函數。
B. 函數單調性的判斷方法有哪些
函數單調性的判斷方法有導數法、定義法、性質法和復合函數同增異減法。
1、導數法
首先對函數進行求導,令導函數等於零,得X值,判斷X與導函數的關系,當導函數大於零時是增函數,小於零是減函數。
2、定義法
設x1,x2是函數f(x)定義域上任意的兩個數,且x1<x2,若f(x1)<f(x2),則此函數為增函數;反知,若f(x1)>f(x2),則此函數為減函數.
3、性質法
若函數f(x)、g(x)在區間B上具有單調性,則在區間B上有:
⑴ f(x)與f(x)+C(C為常數)具有相同的單調性;
⑵ f(x)與c•f(x)當c>0具有相同的單調性,當c<0具有相反的單調性;
⑶當f(x)、g(x)都是增(減)函數,則f(x)+g(x)都是增(減)函數;
⑷當f(x)、g(x)都是增(減)函數,則f(x)•g(x)當兩者都恆大於0時也是增(減)函數,當兩者都恆小於0時也是減(增)函數;
4、復合函數同增異減法
對於復合函數y=f [g(x)]滿足「同增異減」法(應注意內層函數的值域),可令 t=g(x),則三個函數 y=f(t)、t=g(x)、y=f [g(x)]中,若有兩個函數單調性相同,則第三個函數為增函數;若有兩個函數單調性相反,則第三個函數為減函數。
拓展資料:
1、奇函數在對稱的兩個區間上有相同的單調性,偶函數在對稱的兩個區間上有相反的單調性;
2、互為反函數的兩個函數有相同的單調性;
3、如果f(x)在區間D上是增(減)函數,那麼f(x)在D的任一子區間上也是增(減)函數.
C. 判斷函數單調性常用的幾個結論及證明
1.定義法
定義法是求具體函數單調性的一個基本方法,具體步驟可以分為5步:
①取值:在所給區間取任意的x1,x2;
②作差:作函數值之差,即f(x1)-f(x2);
③變形:對②中的式子進行變形,常用方法有因式分解、通分、分子分母有理化、配方等方法;
④判號:判斷f(x1)-f(x2)的正負;
⑤作結論:若x1<x2,且f(x1)-f(x2)<0,則為增函數;若x1<x2,且f(x1)-f(x2)>0,則為減函數。
2.函數性質法
函數性質法是利用常見的簡單函數的單調性來判斷一個相對復雜的函數單調性的方法,相比定義法過程更加簡單。常用性質有:
①y=af(x)與y=f(x)的單調性:a>0,兩者相同;a<0,兩者相反;
②f(x)>0,y=√f(x)與f(x)的單調性相同;
③f(x)≠0,y=1/[f(x)]與f(x)的單調性相反;
④增+增=增,增-減=增,減+減=減,減-增=減。
3.圖像法
圖像法是利用函數圖像的升降性來判斷函數單調性。圖像法的特點是形象直觀,但圖像法一般只用於比較容易畫出函數圖像的函數或者已知函數圖像的函數:圖像上升為增函數,圖像下降為減函數。圖像法也是求函數單調區間的一種常用方法。
4.復合函數法
復合函數f[g(x)]是由內層函數u=g(x)和外層函數y=f(u)復合而成,其解析式一般比較復雜,直接求解單調性比較困難,此時可以由復合函數的內外層函數的單調性入手,分別求出內層函數u=g(x)和外層函數y=f(u)的單調性,再利用「同增異減」的性質判斷出復合函數f[g(x)]的單調性。
二、抽象函數
5.湊差法,6.添項法
抽象函數因為沒有給出解析式也沒有給出圖像,很多同學感覺無從下手,甚至直接放棄,其實掌握方法也並不難。
抽象函數單調性的求解主要是利用單調性的定義以及變形形式,關鍵是充分利用題目中給出的關系式,通過這個關系式構造出f(x1)-f(x2)的形式,構造的常用方法有湊差法和添項法,然後判斷出f(x1)-f(x2)的正負即可。
D. spss分析方法-判別分析(轉載)
判別分析是在分組已知的情況下,根據已經確定分類的對象的某些觀測指標和所屬類別來判斷未知對象所屬類別的一種統計學方法。 下面我們主要從下面四個方面來解說:
[if !supportLineBreakNewLine]
[endif]
實際應用
理論思想
建立模型
[if !supportLineBreakNewLine]
[endif]
分析結果
[if !supportLineBreakNewLine]
[endif]
一、實際應用
判別分析最初應用於考古學, 例如要根據挖掘出來的人頭蓋骨的各種指標來判別其性別年齡等.。慢慢的成為一種常用的分類分析方法,其通過已知的分類情況,根據數據的特徵對其他研究對象進行預測歸類。
在實際生活中,判別分析也被廣泛用於預測事物的類別歸屬。
[if !supportLineBreakNewLine]
[endif]
企業營銷中,營銷人員可通過已有的客戶特徵數據(如消費金額、消費頻次、購物時長、購買產品種類等),預測當前的消費者屬於哪種類型的顧客(款式偏好型、偏重質量型、價格敏感型...),並根據其特點有針對性的採取有效的營銷手段。或是根據各成分含量指標,判斷白酒的品牌或水果的產地等。
除此以外,判別分析還可與聚類分析結合使用。比如,銀行的貸款部門想要在發放貸款之前,可通過此方法判斷申請人是否具有良好的信用風險。
[if !supportLineBreakNewLine]
[endif]
二、理論思想
判別分析首先需要對研究的對象進行分類,然後選擇若干對觀測對象能夠較全面描述的變數,接著按照一定的判別標准建立一個或多個判別函數,使用研究對象的大量資料確定判別函數中的待定系數來計算判別指標。對一個未確定類別的個案只要將其代入判別函數就可以判斷它屬於哪一類總體。
[if !supportLineBreakNewLine]
[endif]
常用的判別分析方法有距離判別法、費舍爾判別法和貝葉斯判別法。
[if !supportLineBreakNewLine]
[endif]
費舍爾判別法:
費舍爾判別法利用投影的方法使多維問題簡化為一維問題來處理。其通過建立線性判別函數計算出各個觀測量在各典型變數維度上的坐標並得出樣本距離各個類中心的距離,以此作為分類依據。
[if !supportLineBreakNewLine]
[endif]
貝葉斯判別法:
貝葉斯判別法通過計算待判定樣品屬於每個總體的條件概率並將樣本歸為條件概率最大的組。其主要思想如下:首先利用樣本所屬分類的先驗概率通過貝葉斯法則求出樣本所屬分類後驗概率,並依據該後驗概率分布作出統計推斷。
[if !supportLineBreakNewLine]
[endif]
距離判別法:
距離判別思想是根據各樣品與各母體之間的距離遠近作出判別的。其通過建立關於各母體的距離判別函數式,得出各樣品與各母體之間的距離值,判別樣品屬於距離值最小的那個母體。
[if !supportLineBreakNewLine]
[endif]
[if !supportLineBreakNewLine]
[endif]
三、建立模型
[if !supportLineBreakNewLine]
[endif]
一般判別分析法的思路:
首先建立判別函數;
然後通過已知所屬分類的觀測量確定判別函數中的待定系數;
最後通過該判別函數對未知分類的觀測量進行歸類。
逐步判別分析法的思路: 逐步判別分析分為兩步
首先根據自變數和因變數的相關性對自變數進行篩選,
然後使用選定的變數進行判別分析。
逐步判別分析是在判別分析的基礎上採用有進有出的辦法,把判別能力強的變數引入判別式的同時,將判別能力最差的變數別除。最終在判別式中只保留數量不多而判別能力強的變數。
數據條件:
[if !supportLists]§ [endif]用戶使用的分組變數必須含有有限數目的不同類別,且編碼為整數。名義自變數必須被重新編碼為啞元變數或對比變數。
[if !supportLists]§ [endif]個案獨立的
[if !supportLists]§ [endif]預測變數應有多變數正態分布,組內方差-協方差矩陣在組中應等同。
[if !supportLists]§ [endif]組成員身份假設為互斥的(不存在屬於多個組的個案),且全體為窮舉的(所有個案均是組成員)。如果組成員身份為真正的分類變數時,則此過程最有效;如果組成員身份基於連續變數的值(如高智商與低智商),則用戶需要考慮使用線性回歸以利用由連續變數本身提供的更為豐富的信息。
一般判別分析案例:
[if !supportLineBreakNewLine]
[endif]
題目:以下3種不同種類豇豆豆莢的質量、寬度和長度的統計表,每種類型都為20個樣本,共60個樣本。根據不同種類豇豆豆莢的特徵,建立鑒別不同種類豇豆的判別方程。
一、數據輸入
[if !vml]
[endif]
二、操作步驟 1、進入SPSS,打開相關數據文件,選擇「分析」|「分類 」|「判別式」命令2、選擇進行判別分析的變數。在「判別分析」對話框的左側列表框中,選擇「類型」進入「分組變數」列表框。單擊「定義范圍」按鈕,在「最小值」和「最大值」中分別輸入1和3,單擊「繼續」按鈕返回「判別分析」對話框。分別選擇「質量」「寬度」「長度」3個變數進入「自變數」列表框,選中「使用步進法」單選按鈕。
[if !vml]
[endif]
3、設置判別分析的統計輸出結果。
單擊「判別分析」對話框中的「統計」按鈕。在「函數系數」選項組中,選中「費希爾」和「未標准化」復選框;在「矩陣」選項組中,選中「組內協方差」復選框。設置完畢後,單擊「繼續」按鈕返回「判別分析」對話框。
[if !vml]
[endif]
4、設置輸出到數據編輯窗口的結果。單擊「保存」按鈕,選中「預測組成員」復選框。
[if !vml]
[endif]
5、其餘設置採用系統默認值即可。單擊「確定」按鈕,等待輸出結果。
[if !supportLineBreakNewLine]
[endif]
四、結果分析
1、組統計量表可以看出,每一種豇豆豆莢的質量、寬度和長度的均值和標准差,也可以知道總樣本的均值和標准差。
[if !vml]
[endif]2、匯聚的組內矩陣表可以知道,各因素之間的協方差和相關系數。可以發現,各因素之間的相關性都較小,因此在判別方程中不需要剔除變數。
[if !vml]
[endif]
3
、輸入和刪除變數情況統計表可以知道,第一步納入的變數是質量,到第三步所有變數全部納入,且從顯著性值均為0可以看出,逐步判別沒有剔除變數。
[if !vml]
[endif]
4、典型判別方程的特徵值可以知道,特徵根數為2,其中第一個特徵根為77.318,能夠解釋所有變異的89.4%。
[if !vml]
[endif]
5、判別方程的有效性檢驗可以看出,顯著性均為0,因此兩個典型方程的判別能力都是顯著的。
[if !vml]
[endif]
6、標准化的典型判別方程可以知道,本例中的兩個標准化的典型判別方程表達式分別為:Y1=0.681*質量-0.674*寬度+0.612*長度Y2=0.363*質量+0.777*寬度+0.302*長度
[if !vml]
[endif]
7、未標准化的典型判別方程可以知道,本例中的兩個未標准化的典型判別方程表達式為:Y1=-11.528+0.210*質量-1.950*寬度+0.186*長度Y2=-15.935+0.112*質量+2.246*寬度+0.092*長度
[if !vml]
[endif]
8、貝葉斯的費希爾線性判別方程可以得到3個分類方程。在這里我們只寫出第一個分類方程。Y1=-90.708+2.557*質量+18.166*寬度+1.922*長度[if !vml]
[endif]9、判別分析在數據編輯窗口的輸出結果新產生的變數記錄是每一樣品的判別分類結果,可以看出,樣品判別分類結果與實際類別是一致的。
[if !vml]
[endif]
分析結論:
[if !supportLineBreakNewLine]
[endif]
通過判別分析可以知道,在本案例中,3種豇豆豆莢的樣品判別分類結果與實際類別是一致的。另外,我們可以得到不同的判別方程,分別包括標准化的典型判別方程、未標准化的典型判別方程和貝葉斯的費希爾線性判別方程,方程的表達式見上面的結果分析。
[if !supportLineBreakNewLine]
[endif]
參考案例數據:
[if !supportLineBreakNewLine]
[endif]
【1】spss統計分析與行業應用案例詳解(第四版) 楊維忠,張甜,王國平 清華大學出版社
(獲取更多知識,前往gz號程式解說)
原文來自https://mp.weixin.qq.com/s/Yapg-5jwMK6cITG_FZsfVA