五年級上冊數學小數簡便計算方法有如下:
1、24.6-3.98/1+5.4-6.02
解析:此題利用加法交換結合律,湊整再計算。
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用湊整法和減法結合律計算,先利用湊整法把99變換為(100-1),再運用a-b-c=a-(b+c)來簡便計算。
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
B. 小數除法的簡便運算方法
小數除法簡便計算的基本方法,
1、運用被除數和除數同時擴大或縮小相同的倍數,商不變的規律進行簡便運算。
如:420÷35=(420÷7)÷(35÷7)=60÷5=12
2、利用添括弧湊整的方法進行簡便運算。
如:800÷125÷8=800÷(125×8)=800÷1000=0.8
小數由整數部分、小數部分和小數點組成。當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數 小數是十進制分數的一種特殊表現形式。分母是10、100、1000……的分數可以用小數表示。所有分數都可以表示成小數,小數中除無限不循環小數外都可以表示成分數。無理數為無限不循環小數。
1、除數是整數的小數的除法
①先按照整數除法的法則去除;
②商的小數點要和被除數的小數點對齊;
③除到被除數的末尾仍有餘數時,就在余數後面添0,再繼續除。
2、除數是小數的小數除法
①先把除數的小數點去掉使它變成整數;
②看除數原來有幾位小數,就把被除數小數點向右移動相同的幾位(位數不夠時補0);
③按照除數是整數的除法進行計算。
一、被除數和商關系
1、被除數擴大(縮小)n倍,商也相應的擴大(縮小)n倍。
2、除數擴大(縮小)n倍,商相應的縮小(擴大)n倍)。
二、整數除法的運演算法則
1、從被除數的最高位起,取出和除數位數相同的數(如果取出的數小於除數,則要取出比除數多一位的數) ,用除數去除它,就得到商的最高位數和余數(余數可能為零) 。
2、把余數化為下一位的單位,加上被除數這-位上的數,再用除數去除它(除數小於該數時商為0),得到商和余數這樣繼續下去直到被除數上的數字全部用完,就得到最後的商和余數。
C. 小數的簡便運算方法
小數乘法:運用運算定律可以使一些計算簡便,小數乘法也可以運用整數乘法的運算定律使一些計算簡便運用定律計算,如果能設法使一個因數轉化為整百數或者兩個因數相乘的積為整百數就能使計算簡便。
小數除法:被除數和除數同時擴大相同的倍數,商不變。並指出需要特別注意被除數和除數要同時擴大,而且擴大的倍數相同。)
D. 十道小數除法簡便運算
小數除法的簡便計算與整數除法的簡便計算一樣,用到的是除法性質。
E. 小數簡便計算方法總結
簡算是一種簡便、迅速的運算,根據算式的不同特點,利用數的組成和分解、各種運算定律、性質或它們之間的特殊關系,使計算過程簡單化,或直接得出結果。根據歸納,常見以下幾類題型:
(一)「湊整巧算」——運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。
【評注】湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。
1、加法交換律
定義:兩個數交換位置和不變,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法結合律
定義:先把前兩個數相加,或者先把後兩個數相加,和不變。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——湊整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【評注】所謂的湊整,就是兩個或三個數結合相加,剛好湊成整十整百,譬如此題,「1.999」剛好 與「2」相差0.001,因此我們就可以先把它讀成「2」來進行計算。但是,一定要記住剛 才「多加的」要「減掉」。「多減的」要「加上」!
(二)運用乘法的交換律、結合律進行簡算。
1、乘法交換律
定義:兩個因數交換位置,積不變.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法結合律
定義:先乘前兩個因數,或者先乘後兩個因數,積不變。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)運用減法的性質進行簡算,同時注意逆進行。
1、減法
定義:一個數連續減去兩個數,可以先把後兩個數相加,再相減。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的運用】
例如:20-8-2=20-(8+2)
(四)運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。
1、除法
定義:一個數連續除去兩個數 ,可以先把後兩個數相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定義:除數除以被除數,把被除數拆為兩個數字連除(這兩個數的積一定是這個被除數)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)運用乘法分配律進行簡算
1、乘法分配律
定義:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些題目是運用分配律的逆運算來簡算:A×C+B×C=(A+B)×C:即提取公因數。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合運算(根據混合運算的法則)
註:數字搭檔( 0.5和2、0.25和4、0.125和8)
總的說來,簡便運算的思路是:(1)運用運算的性質、定律等。
(2)可能打亂常規的計算順序。
(3)拆數或轉化時,數的大小不能改變。
(4)正確處理好每一步的銜接。
(5)速算也是計算,是將硬算化為巧算。
(6)能提高計算的速度及能力,並能培養嚴謹細致、靈活巧妙的工作習慣。
F. 小數的乘法怎麼簡便計算快捷計算
小數乘法的簡便運算
一、乘法交換律與結合律的運用。
提示1:以下計算中,有的需要把一個小數拆成兩個數相乘,要注意拆分後兩數相乘的大小應該與原數相等,特別是小數的位數。如3.2=0.8×4
3.2=0.4×8 0.32=0.04×8 0.32=0.08×4 5.6=0.8×7 5.6=0.7×8
0.56 =0.07×8 0.56 =0.08×7 0.48=0.12×4 0.48=0.04×12
提示2:應用乘法結合律解題的口訣是 連乘用結合
提示3:應用乘法結合律解題的格式是a×b×c=a×(b×c)最後一個步驟是「×」,不要看成是「+」. 如 2.5×0.48=2.5×0.04×12=0.1×12=1.2
A組 4.56×0.4×2.5 12.5×2.7×0.8 12.5×3.2×0.25
B組 2.5×0.48 12.5×5.6 25×0.36
二、乘法分配律的運用。
提示1:A組中的一個因數都具備一個特點,都接近整數1、10、100等,這樣的數就可以拆分成兩個數相加或者相減。
如 10.4=(10+0.4) 9.9=(10-0.9) 0.99=(10-0.01)
但也有這樣的數 8.8=(8+0.8) 4.4=(4+0.4) 0.48=(0.4+0.08)
提示2:應用乘法分配律解題的口訣是 乘加乘減用分配
提示3:應用乘法分配律解題的格式是(a+b)×c=a×c+b×c最後一個步驟是「+」,不要看成是「×」.
如 2.5×0.48=2.5×(0.4+0.08)=2.5×0.4+2.5×0.08=1 + 0.2=1.2
不是 =1 + 0.2= 2
提示4:應用乘法分配律解題的最後一步,有時是數字比較大的兩個數相加減,口算容易出錯,這時就要打草稿豎式計算。
A組 0.25×10.4 12.5×8.8 9.9×0.35
B組 3.7×1.8-2.7×1.8 95.7×0.28+6.3×0.28-0.28×2 1.08×9+1.08
三、比較乘法結合律與分配律在簡便運算時的區別。
下面各題用兩種方法簡算。
12.5×8.8 12.5×8.8 0.25×4.8 0.25×4.8
四、變一變,能簡算。
48×0.56+44×0.48
我來試一試:
0.279×343+0.657×279 0.264×519+264×0.481 9.16×1.53-0.053×91.6
五、拓展提高。
99.99×0.8+11.11×2.8 314×0.043+3.14×7.2-31.4×0.15
G. 小數的加減乘除簡便運算,混合計算
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
H. 小數簡便方法
小數的簡便運算,就了利用運算定律或者是運算性質,巧用特殊數之間的特性進行巧算。
方法/步驟
1
利用運算定律。利用加法的交換律和結合律,乘法的交換律、結合律和分配律,可以使計算簡便。
注意事項
有的題不是一種簡便方法,那就選擇最簡單的方法計算。
I. 小學小數的簡便計算
小學數學中,一直貫穿著一個內容,那就是簡便運算。在整數范圍、小數范圍、分數范圍內都做為一個內容重復出現。而這個內容也正是小學數學中的一個難點。
一、提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
三、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法結合律
注意對加法結合律(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9
=34×(10-0.1)
案例再現:
57×101=?
六、利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交換律,a+b=b+a,
結合律,(a+b)+c=a+(b+c).
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(與加法類似):
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法運算性質(與減法類似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(運用除法性質)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
J. 小數的簡便運算題(至少10道)
(1)80.9X5.5+80.9X4.5
(2)8.88X1.25
(3)25X8X4
(4)2.4X0.8X12.5
(5)19.42X3.6-3.6X9.42
(6)9.9X2.8+0.28
(7)1.1X10.1
(8)(2.5+25)X4
(9)1.25X25X0.8X0.04
(10)(0.125+12.5)X8
如果我回答的好,請採納。
祝你好好學習,天天向上。