⑴ 微生物生長的常用檢測方法
一、生長量測定法
1.1體積測量法:又稱測菌絲濃度法。
通過測定一定體積培養液中所含菌絲的量來反映微生物的生長狀況。方法是,取一定量的待測培養液(如10毫升)放在有刻度的離心管中,設定一定的離心時間(如5分鍾)和轉速(如5000rpm),離心後,倒出上清夜,測出上清夜體積為v,則菌絲濃度為(10-v)/10。菌絲濃度測定法是大規模工業發酵生產上微生物生長的一個重要監測指標。這種方法比較粗放,簡便,快速,但需要設定一致的處理條件,否則偏差很大,由於離心沉澱物中夾雜有一些固體營養物,結果會有一定偏差。
1.2稱乾重法:
可用離心或過濾法測定。一般乾重為濕重的10-20%。在離心法中,將一定體積待測培養液倒入離心管中,設定一定的離心時間和轉速,進行離心,並用清水離心洗滌1-5次,進行乾燥。乾燥可用烘箱在105℃或100℃下烘乾,或採用紅外線烘乾,也可在80℃或40℃下真空乾燥,乾燥後稱重。如用過濾法,絲狀真菌可用濾紙過濾,細菌可用醋酸纖維膜等濾膜過濾,過濾後用少量水洗滌,在40℃下進行真空乾燥。稱乾重發法較為煩瑣,通常獲取的微生物產品為菌體時,常採用這種方法,如活性乾酵母(activitydryyeast,ADY),一些以微生物菌體為活性物質的飼料和肥料。
1.3比濁法:
微生物的生長引起培養物混濁度的增高。通過紫外分光光度計測定一定波長下的吸光值,判斷微生物的生長狀況。對某一培養物內的菌體生長作定時跟蹤時,可採用一種特製的有側臂的三角燒瓶。將側臂插入光電比色計的比色座孔中,即可隨時測定其生長情況,而不必取菌液。該法主要用於發酵工業菌體生長監測。如我所使用UNICO公司的紫外-可見分光光度計,在波長600nm處用比色管定時測定發酵液的吸光光度值OD600,以此監控E.Coli的生長及誘導時間。
1.4菌絲長度測量法:
對於絲狀真菌和一些放線菌,可以在培養基上測定一定時間內菌絲生長的長度,或是利用一隻一端開口並帶有刻度的細玻璃管,到入合適
的培養基,卧放,在開口的一端接種微生物,一段時間後記錄其菌絲生長長度,藉此衡量絲狀微生物的生長
二、微生物計數法
2.1血球計數板法:
血球計數板是一種有特別結構刻度和厚度的厚玻璃片,玻片上有四條溝和兩條嵴,中央有一短橫溝和兩個平台,兩嵴的表比兩平台的表面高0.1mm,每個平台上刻有不同規格的格網,中央0.1mm2面積上刻有400個小方格。通過油鏡觀察,統計一定大格內微生物的數量,即可算出1毫升菌液中所含的菌體數。這種方法簡便,直觀,快捷,但只適宜於單細胞狀態的微生物或絲狀微生物所產生的孢子進行計數,並且所得結果是包括死細胞在內的總菌數。
2.2染色計數法:
為了彌補一些微生物在油鏡下不易觀察計數,而直接用血球計數板法又無法區分死細胞和活細胞的不足,人們發明了染色計數法。藉助不同的染料對菌體進行適當的染色,可以更方便的在顯微鏡下進行活菌計數。如酵母活細胞計數可用美藍染色液,染色後在顯微鏡下觀察,活細胞為無色,而死細胞為藍色。
2.3比例計數法:
將已知顆粒(如黴菌孢子或紅細胞)濃度的液體與一待測細胞濃度的菌液按一定比例均勻混合,在顯微鏡視野中數出各自的數目,即可得未知菌液的'細胞濃度。這種計數方法比較粗放。並且需要配製已知顆粒濃度的懸液做標准。
2.4液體稀釋法:
對未知菌樣做連續十倍系列稀釋,根據估計數,從最適宜的三個連續的10倍稀釋液中各取5毫升試樣,接種1毫升到3組共15隻裝培養液的試管中,經培養後記錄每個稀釋度出現生長的試管數,然後查最大或然數表MPN(mostprobablynumber)得出菌樣的含菌數,根據樣品稀釋倍數計算出活菌含量。該法常用於食品中微生物的檢測,例如飲用水和牛奶的微生物限量檢查。
2.5平板菌落計數法:
這是一種最常用的活菌計數法。將待測菌液進行梯度稀釋,取一定體積的稀釋菌液與合適的固體培養基在凝固前均勻混合,或將菌液塗布於已凝固的固體培養基平板上。保溫培養後,用平板上出現的菌落數乘以菌液稀釋度,即可算出原菌液的含菌數。一般以直徑9cm的平板上出現50-500個菌落為宜。但方法比較麻煩,操作者需有熟練的技術。平板菌落計數法不僅可以得出菌液中活菌的含菌數,而且同時將菌液中的細菌進行了一次分離培養,獲得了單克隆。
2.6試劑紙法:
在平板計數法的基礎上,發展了小型商品化產品以供快速計數用。形式有小型厚濾紙片,瓊脂片等。在濾紙和瓊脂片中吸有合適的培養基,其中加入活性指示劑2,3,5-氯化三苯基四氮唑(TTC,無色)待蘸取測試菌液後置密封包裝袋中培養。短期培養後在濾紙上出現一定密度的玫瑰色微小菌落與標准紙色板上圖譜比較即可估算出樣品的含菌量。試劑紙法計數快捷准確,相比而言避免了平板計數法的人為操作誤差。
2.7膜過濾法:
用特殊的濾膜過濾一定體積的含菌樣品,經丫叮橙染色,在紫外顯微鏡下觀察細胞的熒光,活細胞會發橙色熒光,而死細胞則發綠色熒光。
2.8生理指標法:
微生物的生長伴隨著一系列生理指標發生變化,例如酸鹼度,發酵液中的含氮量,含糖量,產氣量等,與生長量相平行的生理指標很多,它們可作為生長測定的相對值。
2.9測定含氮量:
大多數細菌的含氮量為乾重的12.5%,酵母為7.5%,黴菌為6.0%。根據含氮量×6.25,即可測定粗蛋白的含量。含氮量的測定方法有很多,如用硫酸,過氯酸,碘酸,磷酸等消化法和Dumas測N2氣法。Dumas測N2氣法是將樣品與CuO混合,在CO2氣流中加熱後產生氮氣,收集在呼吸計中,用KOH吸去CO2後即可測出N2的量。
2.10測定含碳量:
將少量(乾重0.2-2.0mg)生物材料混入1毫升水或無機緩沖液中,用2毫升2%的K2Cr2O7溶液在1000C下加熱30分鍾後冷卻。加水稀釋至5毫升,在580nm的波長下讀取吸光光度值,即可推算出生長量。需用試劑做空白對照,用標准樣品做標准曲線。
2.11還原糖測定法:
還原糖通常是指單糖或寡糖,可以被微生物直接利用,通過還原糖的測定可間接反映微生物的生長狀況,常用於大規模工業發酵生產上微生物生長的常規監測。方法是,離心發酵液,取上清液,加入斐林試劑,沸水浴煮沸3分鍾,取出加少許鹽酸酸化,加入Na2S2O3臨近終點時加入澱粉溶液,繼續加Na2S2O3至終點,查表讀出還原糖的含量。
2.12氨基氮的測定:
方法是,離心發酵液,取上清液,加入甲基紅和鹽酸作指示劑,加入0.02N的NaOH調色至顏色剛剛褪去,加入底物18%的中性甲醛,反應數刻,加入0.02N的使之變色,根據NaOH的用量折算出氨基氮的含量。根據培養液中氨基氮的含量,可間接反映微生物的生長狀況。
2.13其他生理物質的測定:
P,DNA,RNA,ATP,NAM(乙醯胞壁酸)等含量以及產酸,產氣,產CO2(用標記葡萄糖做基質),耗氧,黏度,產熱等指標,都可用於生長量的測定。也可以根據反應前後的基質濃度變化,最終產氣量,微生物活性三方面的測定反映微生物的生長。如我所在BMP-2的發酵生產上,隨時監測溶氧量的變化和酸鹼度的變化,判斷細菌的長勢。
拓展:微生物的現代定義
肉眼難以看清,需要藉助光學顯微鏡或電子顯微鏡才能觀察到的一切微小生物的總稱。微生物包括細菌、病毒、真菌和少數藻類等。(但有些微生物是肉眼可以看見的,像屬於真菌的蘑菇、靈芝等。)病毒是一類由核酸和蛋白質等少數幾種成分組成的「非細胞生物」,但是它的生存必須依賴於活細胞。根據存在的不同環境分為空間微生物、海洋微生物等,按照細胞結構分類分為原核微生物和真核微生物。
微生物的主要特徵
體小面大
一個體積恆定的物體,被切割的越小,其相對表面積越大。微生物體積很小,如一個典型的球菌,其體積約1mm,可是其表面積卻很大。這個特徵也是賦予微生物其他如代謝快等特性的基礎。
吸多轉快
微生物通常具有極其高效的生物化學轉化能力。據研究,乳糖菌在1個小時之內能夠分解其自身重量1000-10000倍的乳糖,產朊假絲酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。
生長繁殖快
相比於大型動物,微生物具有極高的生長繁殖速度。大腸桿菌能夠在12.5-20分鍾內繁殖1次。不妨計算一下,1個大腸桿菌假設20分鍾分裂1次,1小時3次,1晝夜24小時分裂24×3=72次,大概可產生4722366500萬億個(2的72次方),這是非常巨大的數字。但事實上,由於各種條件的限制,如營養缺失、競爭加劇、生存環境惡化等原因,微生物無法完全達到這種指數級增長。 已知大多數微生物生長的最佳pH范圍為7.0 (6.6~7.5)附近,部分則低於4.0。
微生物的這一特性使其在工業上有廣泛的應用,如發酵、單細胞蛋白等。微生物是人類不可或缺的好朋友。
適應強 易變異
分布廣 種類多
微生物對我們生活的影響
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。微生物非常小,必須通過顯微鏡放大約1000 倍才能看到。比如中等大小的細菌,1000個疊加在一起只有句號那麼大。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧妙。例如健康人腸道中即有大量細菌存在,稱為正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及中國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。[10]
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
1、直接觀察。對引進菌種觀察包裝是否合乎要求,棉塞有無松動,試管、玻璃瓶和塑料袋有無破損,棉塞和管、瓶或袋中有無病蟲侵染,菌絲色澤是否正常,有無發生變化。然後在瓶塞邊作深吸氣,聞其是否具備特有的香味。原種和栽培種可取出小塊菌絲體觀察其顏色和均勻度,並用手指捏料塊檢驗含水量是否符合標准。
2、顯微鏡檢驗。若菌絲透明,呈分枝狀、有橫隔、鎖狀聯合明顯,再加上具有不同品種固有的特徵,則可認為是合格菌種。
3、觀察菌絲長速。將供測的菌種接入新配製的試管斜面培養基上,置於最適宜的溫、濕度條件下進行培養,如果菌絲生長迅速、整齊濃密、健壯有力,則表明是優良菌種,否則即是劣質菌種。
優質菌種的標准
食用菌的種類雖然繁多,但從總體上看,每一個優良菌種均有"純、正、壯、潤、香"的共性。其標準是:
1、菌種的純度要高,不能有雜菌感染,也不能有其他類似的菌種。
2、菌絲色澤要純正,多數種類的菌絲應純白、有光澤,原種、栽培種菌絲應連結成塊,無老化變色現象。
3、菌絲要粗壯,分枝多而密,接種到培養基吃料塊,生長旺盛。
4、培養體要濕潤,與試管(瓶)壁緊貼而不幹縮,含水適宜。
5、具有每品種特有的清香味,不可有霉、腐氣味。
⑶ 目的基因的鑒定方法有哪些
基因的鑒定方法:
間接識別法
在基因的間接識別法(Extrinsic Approach)中,人們利用已知的mRNA或蛋白質序列為線索在DNA序列中搜尋所對應的片段。由給定的mRNA序列確定唯一的作為轉錄源的DNA序列;而由給定的蛋白質序列,也可以由密碼子反轉確定一族可能的DNA序列。因此,在線索的提示下搜尋工作相對較為容易,搜尋演算法的關鍵在於提高效率,並能夠容忍由於測序不完整或者不精確所帶來的誤差。BLAST是目前以此為目的最廣泛使用的軟體之一。
若DNA序列的某一片段與mRNA或蛋白質序列具有高度相似性,這說明該DNA片段極有可能是蛋白編碼基因。但是,測定mRNA或蛋白質序列的成本高昂,而且在復雜的生物體中,任意確定的時刻往往只有一部分基因得到了表達。這意味著從任何單個細胞的mRNA和蛋白質上都只能獲得一小部分基因的信息;要想得到更為完整的信息,不得不對成百上千個不同狀態的細胞中的mRNA和蛋白質測序。這是相當困難的。比如,某些人類基因只在胚胎或胎兒時期才得到表達,對它們的研究就會受到道德因素的制約。
盡管有以上困難,對人類自身和一些常見的實驗生物如老鼠和酵母菌,人們已經建立了大量轉錄和蛋白質序列的資料庫。如RefSeq資料庫,Ensembl資料庫等等。但這些資料庫既不完整,也含有相當數量的錯誤。
從頭計演算法
鑒於間接識別法的種種缺陷,僅僅由DNA序列信息預測蛋白質編碼基因的從頭計演算法(Ab Initio Approach)就顯得十分重要了。一般意義上基因具有兩種類型的特徵,一類特徵是「信號」,由一些特殊的序列構成,通常預示著其周圍存在著一個基因;另一類特徵是「內容」,即蛋白質編碼基因所具有的某些統計學特徵。使用Ab Initio方法識別基因又稱為基因預測。通常我們仍需藉助實驗證實預測的DNA片段是否具有生物學功能。
在原核生物中,基因往往具有特定且容易識別的啟動子序列(信號),如Pribnow盒和轉錄因子。與此同時,構成蛋白質編碼的序列構成一個連續的開放閱讀框(內容),其長度約為數百個到數千個鹼基對(依據該長度區間可以篩選合適的密碼子)。除此之外,原核生物的蛋白質編碼還具有其他一些容易判別的統計學的特徵。這使得對原核生物的基因預測能達到相對較高的精度。
對真核生物(尤其是復雜的生物如人類)的基因預測則相當有挑戰性。一方面,真核生物中的啟動子和其他控制信號更為復雜,還未被很好的了解。兩個被真核生物基因搜尋器識別到的訊號例子有CpG islands及poly(A) tail的結合點。
另一方面,由於真核生物所具有的splicing機制,基因中一個蛋白質編碼序列被分為了若干段(外顯子),中間由非編碼序列連接(基因內區)。人類的一個普通蛋白質編碼基因可能被分為了十幾個外顯子,其中每個外顯子的長度少於200個鹼基對,而某些外顯子更可能只有二三十個鹼基對長。因而蛋白質編碼的一些統計學特徵變得難於判別。
高級的基因識別演算法常使用更加復雜的概率論模型,如隱馬爾可夫模型。Glimmer是一個廣泛應用的高級基因識別程序,它對原核生物基因的預測已非常精確,相比之下,對真核生物的預測則效果有限。GENSCAN計劃是一個著名的例子。
比較基因組學
由於多個物種的基因組序列已完全測出,使得比較基因組學得以發展,並產生了新的基因識別的方法。該方法基於如下原理:自然選擇的力量使得基因和DNA序列上具有生物學功能的其他片段較其他部分有較慢的變異速率,在前者的變異更有可能對生物體的生存產生負面影響,因而難以得到保存。因此,通過比較相關的物種的DNA序列,我們能夠取得預測基因的新線索。2003年,通過對若干種酵母基因組的比較,人類對原先的基因識別結果作了較大的修改;類似的方法也正在應用於人類的基因組研究,並可能在將來的若干年內取得成果。
⑷ 基因定位的基因測定
非整倍體測交法可以用來測定基因屬於哪一個常染色體。用常染色體隱性突變型純合體(a/a)和野生型二倍體(+/+)雜交,再用子一代雜合體(a/+)和隱性親本回交,在它們的子代中表型是野生型的和表型是突變型的各佔50%(見孟德爾定律)。
雜交a/a×+/+
↓
回交a/+ × a/a
↓
回交子代a/aa/+
突變型野生型
比例1∶1
如果常染色體隱性突變型純合體和某一染色體的野生型三體 (+/+/+)品系(見染色體畸變)雜交,子一代中的三體個體再和隱性親本回交,在它們的子代中野生型和突變型之比是5∶1而不是1∶1。
如果常染色體隱性突變型純合體和某一染色體的野生型單體品系 (+)雜交,在子一代中就出現50%的突變型個體,而不是100%的野生型。
雜交a/a×+
↓
子一代a/+∶a
野生型突變型
比例1∶1
根據上述三種不同的雜交結果,可見只要具備相當於每一染色體的一系列三體和單體品系,便能從雜交子代的突變型和野生型的比數中判斷任何一個突變基因所屬的染色體。小麥是多倍體植物,多倍體植物增加或減少一個染色體不會使它的生活力受到嚴重的影響,因此容易建立整套三體或單體品系,使基因定位工作得以順利進行。除了小麥等植物以外,這一方法也用在酵母菌的遺傳學研究中。 由於子囊菌減數分裂所形成的四分體包被在一個子囊里,所以判斷兩個基因是否連鎖,只需計算出各種類型的四分體數(即子囊數)。如果其中一個基因所屬的連鎖群已經知道,便很容易測定另一基因是否屬於同一連鎖群。
四分體有三種,即親代二型(PD)、非親代二型(NPD)和四型(T)。如果有關的兩個基因是連鎖的,即PD是不交換或二線雙交換的結果,NPD是四線雙交換的結果,T是單交換或三線雙交換的結果(見連鎖和交換)。如果有關的兩個基因是不連鎖的,那麼雙基因雜交子代中所出現的四分體類型要看這兩個基因各自和著絲粒之間是否發生交換而定(表1)。根據這些關系,可以得到這樣的規律:在雙基因雜交子代的四分體類型中如果PD數大大地超出 NPD數而且T多而NPD少,那麼這兩個基因是連鎖的,如果PD數和NPD數接近而且T少而NPD多,那麼是不連鎖的,一般把NPD/T的比值大於或小於1/4作為判斷的標准。 易位(見染色體畸變)使染色體上的基因改變連鎖關系,所以易位可以用來進行基因定位。如果易位所涉及的染色體是可以被識別的,那就更有利於定位工作。如果在遺傳學分析中發現某兩個連鎖群的連鎖關系都發生了改變,同時在顯微鏡下又可以辨認出有兩個染色體發生了相互易位,那麼就可以知道兩個連鎖群和兩個染色體的對應關系。例如遺傳學分析的結果說明小鼠品系 T1380的相互易位涉及連鎖群LGⅡ和LGⅨ。品系RB163H的相互易位涉及連鎖群LGⅡ和LGⅫ。細胞學觀察說明前者涉及染色體 9和17,後者涉及染色體9和19,因此知道連鎖群 LGⅡ屬於染色體9,連鎖群LGⅨ屬於染色體17,連鎖群 LGⅫ屬於染色體19。
某些生物的染色體具有天然的標記,例如果蠅的唾腺染色體具有容易辨認的橫紋,玉米的染色體有容易辨認的巨大的染色粒,所以通過直接的細胞學觀察就可以辨認出易位所涉及的染色體,但是對於染色體數較多而又沒有天然標記的生物,就需用顯帶技術鑒定染色體的易位。上述小鼠的連鎖群所屬的染色體便是應用顯帶技術鑒定的(見核型)。 在包括兩對基因的雜交中,一次雜交可以測定兩個基因之間的距離,通過三次雜交便可以測定三個基因的排列順序和距離。但是在包括三對基因的一次雜交中,便可以測定三個基因的排列順序和距離,這就是1913年由斯特蒂文特首創的三點測驗方法。例如黑腹果蠅的X染色體上有黃體基因(yellow body,y;野生型灰體,y)、白眼基因(white eye,w;野生型紅眼,w)和短翅基因(miniature wing,m;野生型長翅,m)。將黃體、白眼、短翅雌蠅和野生型雄蠅 (ywm 即+++)雜交,將得到的雌性雜合體 再和雄性子代ywm雜交,得到子二代個體(表3)。
從表中的數值求得:
基因y和w之間的重組頻率=1.3%
基因w和m之間的重組頻率=32.8%
基因y和m之間的重組頻率
因此這三個基因在染色體上的相對位置如圖2。三點測驗或者包括更多的基因的雜交還可以用來研究交叉干涉、染色單體干涉等現象。 一個基因與它所屬染色體的著絲粒之間的距離稱為著絲粒距離。在不同的生物中,可用不同的方法測定著絲粒距離。在粗糙脈孢菌中,著絲粒和基因之間的距離可以根據子囊中子囊孢子的排列順序來測定,這是1932年美國微生物遺傳學家CC.林德格倫所首創的方法。在同一染色體上兩個基因的著絲粒距離都被測定後,這兩個基因之間的距離就可以斷定為兩者之和或者兩者之差。
子囊的排列方式有 6種,AAaa和aaAA這兩種稱為第一次分裂分離,AaAa、aAaA、AaaA、aAAa這四種稱為第二次分裂分離。前者基因A(a)和著絲粒之間沒有發生交換,後者A(a)和著絲粒之間發生了交換。
所以某一基因和著絲粒之間交換頻率愈高,第二次分裂分離子囊愈多。由於每次交換導致半數染色單體成為重組類型,所以
在高等植物如小麥和棉花中,可以利用衍生的端著絲粒染色體進行著絲粒距離測定。例如某一雄性親本除了有一個正常的具中央著絲粒的染色體以外,還有一個由它的同源染色體衍生來的端著絲粒染色體。如果在正常染色體上有一個待測著絲粒距離的隱性基因,在端著絲粒染色體上有野生型的等位基因,帶有端著絲粒染色體的花粉缺少一條染色體臂,使它不能順利受精,因此大部分受精的配子都帶有隱性基因,即帶有正常的染色體。只有待測基因和端著絲粒染色體基因之間發生了一次交換,才能得到具有顯性野生型基因的配子。因此由這樣的雄性親本和純合隱性的雌性親本雜交子代中出現的野生型個體數便可推知交換發生的頻率,從而求得隱性基因的著絲粒距離。 三點測驗和著絲粒距離法中所測定的都是發生在減數分裂中的染色體交換。1936年美國遺傳學家C.斯特恩在果蠅中發現體細胞在有絲分裂過程中也可以發生染色體交換(見連鎖和交換)。
50年代中G.蓬泰科爾沃等在研究構窠麴黴時發展起來一種利用體細胞交換的系統的基因定位方法。在進行有絲分裂的雜合二倍體細胞中,體細胞交換會導致在子代體細胞中出現隱性基因的純合體,這一過程稱為純合化。
如果某一個二倍體細胞的某一染色體臂上有若干個基因都呈雜合狀態,那麼就可根據子代體細胞各個基因純合化的頻率推知它們的相對位置。交換只使比交換位置更遠離著絲粒的隱性基因純合化,所以某個基因純合化的頻率愈高,它離著絲粒的距離就愈遠(圖3)。由於體細胞交換頻率遠遠低於減數分裂過程中的交換頻率,所以這一方法一般只用於不進行有性生殖的生物如某些真菌等的基因定位。這一方法也曾在衣藻中用來進行葉綠體基因的定位。
根據所測基因在某一已知染色體區段中是否存在的 基因定位 如果染色體的某一區段的位置是已知的,而且測得某一基因的位置在這一區段中,那麼這一基因的位置也就被測定了。 這是一種結合物理圖譜製作和遺傳學分析的基因定位方法,它適用於病毒等基因組較小的生物。以大腸桿菌噬菌體ΦX174為例,把野生型噬菌體的雙鏈復制型DNA分子用限制性內切酶HindⅡ切為13個片段,把每種片段和突變型 amg的DNA單鏈在使DNA分子變性並復性的條件下混合保溫,然後用各個樣品分別轉化受體細菌。如果在某一樣品處理後的受體細菌中出現了大量的野生型噬菌體,於是就說明這一樣品中的HindⅡ片段包含著amg的相應的野生型基因,由於13個HindⅡ片段的位置在物理圖譜中全部都是已知的,因此便可以推知amg基因在染色體上的相應位置。用這一方法在ΦX174的環狀的染色體圖上已經測定了至少19個基因的位置。
根據並發事件的基因定位 位置鄰近的基因表現某些相關的行為,所以從這些行為可以推測基因的連鎖關系。 缺失帶來和基因突變相同的表型。由一次缺失所造成的突變只涉及相鄰接的基因,因此可以從缺失所帶來的基因突變的分析來測定一些基因的相對位置,這一方法被廣泛應用於酵母菌的線粒體基因的定位(見染色體外遺傳)。
根據基因行為的定位 基因的某些行為可以反映它們的位置。在細菌接合過程中「雄性」細菌的染色體基因按先後順序轉移到「雌性」細菌中。一些基因組較小的病毒,整個基因組往往作為一個單位轉錄。因此接合過程中基因轉移的先後、轉錄過程中轉錄的先後或DNA復制的先後都可以在某些特殊的生物中用來作為基因定位的手段。 通過種種方法可以測得基因之間的距離,但圖距並不表示絕對長度,而且在不同的生物中同一圖距代表不同的實際長度。通過細胞遺傳學的方法可以測定基因的實際位置,這樣繪制的基因位置圖稱為細胞學圖,而通過一般遺傳學方法繪制的圖則稱為遺傳學圖。
在雜合的二倍體生物中,由於顯性的野生型基因的存在,隱性的突變基因得不到表現。如果帶有野生型基因的這一染色體發生了一個缺失,而缺失部分又正好包括這一野生型基因,那麼同源染色體上相應的隱性基因的突變性狀便得以表現(見染色體畸變)。果蠅具有便於觀察染色體細微結構的唾腺染色體,它上面的橫紋缺失可以在光學顯微鏡下識別。通過一系列的雜交,可以得到某一隱性突變基因和一系列的缺失染色體組合在一起的果蠅,對於這些雜合體果蠅進行染色體分析和性狀觀察,便可以判斷某隱性突變基因在染色體上的真實位置。
從果蠅的X染色體上包括白色復眼(white eye,w)和小糙眼(facet,fa)區域的分析結果(圖4)可以看到凡是缺失3C7這一橫紋的雜合體都呈現小糙眼突變型性狀,說明fa基因位置在唾腺染色體的3C7橫紋處。 原核生物 DNA分子上缺乏天然的容易識別的標記,可用限制圖譜和部分變性圖的測定來彌補這一不足。
各種限制性核酸內切酶具有各自的識別順序。這些識別順序可以作為DNA部位的標記,用不同的限制酶處理同一DNA分子,通過對酶切產生的DNA片段的大小和位置的分析,可以繪制出某一 DNA分子的限制圖譜。此外,每一個DNA分子上富含A∶T鹼基對和富含 G嗈C鹼基對的區域的分布各不相同。富含A∶T鹼基對的區域比富含G嗈C鹼基對的區域更易變性。所以在嚴格控制的變性條件下每一種 DNA分子具有變性環的特定分布形式,構成部分變性圖。 一個基因內部的各個點突變的基因轉變常呈梯度現象,即在這基因的一端發生基因轉變的頻率最高,在另一端則最低,在兩端之間存在著一個轉變頻率的梯度。對於任何一個未知位置的點突變,可以通過基因轉變頻率的測定進行精細結構定位。這一方法的應用限於一次減數分裂產物包被在一個囊裡面的子囊菌,而且限於影響子囊孢子顏色和形狀的基因。
⑸ 如何在酵母中檢測某種蛋白的表達位置
採用PCR方法從水稻細菌性條斑病菌RS105菌株中擴增harpinXooc編碼基因hrf2,將其克隆到酵母表達載體pPICZαA的分泌信號肽基因下游,獲得重組表達質粒pPICZαA-hrf2。重組表達質粒線性化後電擊轉化至畢赤酵母宿主菌X-33,經抗生素Zeocin篩選和PCR鑒定後,得到重組酵母菌X-33/pPICZαA-hrf2。用甲醇誘導重組酵母菌表達目標蛋白,發酵上清液經濃縮後進行SDS-PAGE電泳分析,在約18kD處有特異目標條帶出現。Western blot檢測表明表達產物具有良好的抗原性。生物活性檢測表明酵母重組表達蛋白harpinXooc能夠誘導煙草產生過敏反應和促進煙草生長,活性高於在大腸桿菌中表達的harpinXooc。
⑹ 酵母中的質粒是否整合到酵母染色體上怎麼檢測
如果是做酵母表達,最直接的方法是提取酵母基因組作為模板,用特異性PCR檢測目標基因是否已經整合到了酵母基因組中。
⑺ 除了看啤酒泡沫的豐富程度外還可以怎樣檢測ltp1基因在酵母菌中的表達
(1)圖示採用了轉基因技術,其原理是基因重組.
(2)由圖可知,將目的基因導入受體細胞所用的運載體是大腸桿菌的質粒.
(3)構建基因表達載體時,需要用同種限制酶切割外源DNA分子(含LTP1基因的DNA片段)和運載體,以產生相同的黏性末端.
(4)從圖中可看出,目的基因插入到了質粒的抗四環素基因中,從而破壞了抗四環素基因結構的完整性,但抗青黴素基因仍完整,因此含有重組質粒的啤酒酵母菌在含青黴素的培養基上能存活,而在含四環素的培養基上不能存活.
(5)除了看啤酒泡沫的豐富程度外,還可以通過檢驗轉基因啤酒酵母菌能否產生LTP1蛋白來檢測LTP1基因在啤酒酵母菌中的表達情況.
故答案為:
(1)基因重組
(2)(大腸桿菌的)質粒
(3)運載體 含LTP1基因的DNA片段
(4)在含有青黴素的培養基上能存活,但在含有四環素的培養基上不能存活
(5)檢驗轉基因啤酒酵母菌能否產生LTP1蛋白
⑻ 鑒定澱粉酶基因是否插入酵母菌可採用的檢測方法有什麼
可用以澱粉為唯一碳源的全合成培養基對酵母菌進行培養,並以培養結果為檢測依據。
野生型酵母菌沒有澱粉酶基因,因而不能直接利用澱粉為碳源。當澱粉酶基因插入酵母菌基因組,並成功得到表達後,當培養環境中只有澱粉作為唯一碳源時,酵母菌就可以利用插入的澱粉酶基因,產生胞外澱粉酶分解澱粉為單糖,成為酵母菌可利用的碳源。
在以澱粉為唯一碳源的全合成培養基上,如果該酵母菌能夠生長,就說明該酵母菌能夠利用澱粉為碳源,表明來自於其他生物的澱粉酶基因已成功插入了酵母菌的基因組,並能夠成功表達。
⑼ 鑒定澱粉酶基因是否插入釀酒酵母菌,可用的檢測方法
酵母菌是真核生物,含有DNA分子,所以,可以利用DNA分子雜交技術,即使用放射性同位素標記的含目的基因的DNA片段作探針檢測