㈠ 物理學中怎樣運用動態矢量三角形
矢量三角形一般運用在對力的分析上~但是·一個物體的受力分析是在一個作用點上,所以要通過平移將力合在一個三角形內分析,運用三角形性質來求解!
㈡ 矢量三角形
物體受三個共點力作用而平衡時,這三個力的矢量箭頭首尾相接,構成一個閉合的,這就是! 若三個力矢量箭頭相接恰好構成一個閉合的三角形,則這三個力的合力必為零。 在運用法時,常常用到一些數學知識:三角函數法、三角形圖解法、正弦定理以及相似三角形法。 法在分析矢量的動態變化時,常採用此法。尤其在合矢量不變,一個矢量的方向不變,分析另一個分矢量的大小和方向變化時,更適合用法! 其實,法是由平行四邊形法變化而來的,但比平行四邊形法應用更廣泛。因為,平行四邊形法無法應用在共線力的合成。還有一點很重要:矢量可以平移,但前提是不能改變它的方向以及箭頭的指向!
㈢ 三力動態平衡的分析方法
方法一:三角形圖解法。
特點:三角形圖象法則適用於物體所受的三個力中,有一力的大小、方向均不變(通常為重力,也可能是其它力),另一個力的方向不變,大小變化,第三個力則大小、方向均發生變化的問題。
方法:先正確分析物體所受的三個力,將三個力的矢量首尾相連構成閉合三角形。然後將方向不變的力的矢量延長,根據物體所受三個力中二個力變化而又維持平衡關系時,這個閉合三角形總是存在,只不過形狀發生改變而已,比較這些不同形狀的矢量三角形,各力的大小及變化就一目瞭然了。
方法二:相似三角形法。
特點:相似三角形法適用於物體所受的三個力中,一個力大小、方向不變,其它二個力的方向均發生變化,且三個力中沒有二力保持垂直關系,但可以找到力構成的矢量三角形相似的幾何三角形的問題
原理:先正確分析物體的受力,畫出受力分析圖,將三個力的矢量首尾相連構成閉合三角形,再尋找與力的三角形相似的幾何三角形,利用相似三角形的性質,建立比例關系,把力的大小變化問題轉化為幾何三角形邊長的大小變化問題進行討論。
方法三:作輔助圓法
特點:作輔助圓法適用的問題類型可分為兩種情況:①物體所受的三個力中,開始時兩個力的夾角為90°,且其中一個力大小、方向不變,另兩個力大小、方向都在改變,但動態平衡時兩個力的夾角不變。②物體所受的三個力中,開始時兩個力的夾角為90°,且其中一個力大小、方向不變,動態平衡時一個力大小不變、方向改變,另一個力大小、方向都改變,
原理:先正確分析物體的受力,畫出受力分析圖,將三個力的矢量首尾相連構成閉合三角形,第一種情況以不變的力為弦作個圓,在輔助的圓中可容易畫出兩力夾角不變的力的矢量三角形,從而輕易判斷各力的變化情況。第二種情況以大小不變,方向變化的力為直徑作一個輔助圓,在輔助的圓中可容易畫出一個力大小不變、方向改變的的力的矢量三角形,從而輕易判斷各力的變化情況。
方法四:解析法
特點:解析法適用的類型為一根繩掛著光滑滑輪,三個力中其中兩個力是繩的拉力,由於是同一根繩的拉力,兩個拉力相等,另一個力大小、方向不變的問題。
原理:先正確分析物體的受力,畫出受力分析圖,設一個角度,利用三力平衡得到拉力的解析方程式,然後作輔助線延長繩子一端交於題中的界面,找到所設角度的三角函數關系。當受力動態變化是,抓住繩長不變,研究三角函數的變化,可清晰得到力的變化關系。
㈣ 力學動態分析的矢量三角形和相似三角形有什麼區別
在分析矢量三角形時除了已知的一個恆力外,一定還可以找到一個不變數,若找不到就一定是應用相似三角形。
㈤ 矢量控制的原理
由於非同步電機的動態數學模型是一個高階、非線性、強耦合的多變數系統。上世紀70年代西門子工程師F.Blaschke首先提出非同步電機矢量控制理論來解決交流電機轉矩控制問題。矢量控制實現的基本原理是通過測量和控制非同步電動機定子電流矢量,根據磁場定向原理分別對非同步電動機的勵磁電流和轉矩電流進行控制,從而達到控制非同步電動機轉矩的目的。
簡介
具體是將非同步電動機的定子電流矢量分解為產生磁場的電流分量 (勵磁電流) 和產生轉矩的電流分量 (轉矩電流) 分別加以控制,並同時控制兩分量間的幅值和相位,即控制定子電流矢量,所以稱這種控制方式稱為矢量控制方式。簡單的說,矢量控制就是將磁鏈與轉矩解耦,有利於分別設計兩者的調節器,以實現對交流電機的高性能調速。矢量控制方式又有基於轉差頻率控制的矢量控制方式、無速度感測器矢量控制方式和有速度感測器的矢量控制方式等。這樣就可以將一台三相非同步電機等效為直流電機來控制,因而獲得與直流調速系統同樣的靜、動態性能。矢量控制演算法已被廣泛地應用在siemens,AB,GE,Fuji,SAJ等國際化大公司變頻器上。
矢量控制方式
採用矢量控制方式的通用變頻器不僅可在調速范圍上與直流電動機相匹配,而且可以控制非同步電動機產生的轉矩。由於矢量控制方式所依據的是准確的被控非同步電動機的參數,有的通用變頻器在使用時需要准確地輸入非同步電動機的參數,有的通用變頻器需要使用速度感測器和編碼器。鑒於電機參數有可能發生變化,會影響變頻器對電機的控制性能,目前新型矢量控制通用變頻器中已經具備非同步電動機參數自動檢測、自動辨識、自適應功能,帶有這種功能的通用變頻器在驅動非同步電動機進行正常運轉之前可以自動地對非同步電動機的參數進行辨識,並根據辨識結果調整控制演算法中的有關參數,從而對普通的非同步電動機進行有效的矢量控制。
舉例
以非同步電動機的矢量控制為例: 它首先通過電機的等效電路來得出一些磁鏈方程,包括定子磁鏈,氣隙磁鏈,轉子磁鏈,其中氣隙磁鏈是連接定子和轉子的.一般的感應電機轉子電流不易測量,所以通過氣息來中轉,把它變成定子電流. 然後,有一些坐標變換,首先通過3/2變換,變成靜止的d-q坐標,然後通過前面的磁鏈方程產生的單位矢量來得到旋轉坐標下的類似於直流機的轉矩電流分量和磁場電流分量,這樣就實現了解耦控制,加快了系統的響應速度. 最後再經過2/3變換,產生三相交流電去控制電機,這樣就獲得了良好的性能.
矢量控制(VC)方式
矢量控制變頻調速的做法是將非同步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換, 等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1、It1(Im1相當於直流電動機的勵磁電流;It1相當於與轉矩成正比的電樞電流),然後模仿直流電動機的控制方法,求得直流電動機的控制量,經過相應的坐標反變換,實現對非同步電動機的控制。其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然後分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現正交或解耦控制。 綜合以上:矢量控制無非就四個知識:等效電路、磁鏈方程、轉矩方程、坐標變換(包括靜止和旋轉) 矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由於轉子磁鏈難以准確觀測,系統特性受電動機參數的影響較大,且在等效直流電動機控制過程中所用矢量旋轉變換較復雜,使得實際的控制效果難以達到理想分析的結果。
㈥ 基於不同數據源的土地利用變化遙感動態監測方法
李翔宇 樊彥國
(中國石油大學地球資源與信息學院,山東東營,257061)
摘要:本文從所擁有的遙感數據源的可能情況出發,分別介紹了各種情況下利用遙感進行土地利用變化動態監測的方法,分析了其優勢和劣勢。
關鍵詞:遙感;土地利用變化;動態監測;方法
1 引言
我國是一個人多地少的國家,土地是我們賴以生存的資源。建立土地動態監測系統以快速准確地提供各類土地資源面積及其分布、土地資源動態變化狀況及土地資源生態環境信息是十分必要的,這樣可以保證我國在科學翔實的資料基礎上對土地資源進行科學的規劃及合理的利用,實現土地資源的可持續健康發展。可是傳統的統計或實地調查方式,耗時耗力,勞民傷財,並且難以適應土地利用的快速變化,而遙感可以提供及時准確且覆蓋面廣的地面影像資料,並且周期短、信息量大,通過後期的分析、處理、比較,可以使人們迅速准確地掌握土地利用變化的詳細信息,即實現土地利用的動態監測。現在,遙感技術已成為進行土地利用變化動態監測的重要手段。
基於遙感影像的土地利用變化監測方法大致可分為兩類:光譜直接比較法和分類結果比較法。多數變化提取演算法屬於前一種,主要包括影像差值法、比值法、主成分分析法和變化矢量分析法等,這些演算法直接通過兩時相數據的光譜差異確定變化發生的區域,但不能得出變化圖斑的類型;後一種方法通過對各自時相的數據進行土地利用分類,通過對兩個分類結果的比較提取變化信息,但其精度受兩時相數據分類精度的制約。實際操作中可以根據所持有數據源的不同而採用相應的方法。
2 基於單一感測器的土地利用變化監測方法
2.1 基於單一感測器多時相遙感影像
當遙感數據源為單一感測器但可以獲得多時相遙感影像時,可以考慮以下幾種方法。
2.1.1 單變數圖像差值法[1]
單變數圖像差值法比較簡單,是使用最廣泛的一種探測方法。它是將兩個時相的遙感圖像按波段進行逐像元相減,從而生成一幅新的代表二時相間光譜變化的差值圖像。輻射值的顯著變化代表了土地覆蓋變化,在差值圖像中接近於零的像元就被看做是未變化的,而那些大於或小於零的像元表示其覆蓋狀況發生了某種變化,從而設定適當的閾值就可以把變化信息提取出來。
2.1.2 圖像比值法[1,2]
比值處理被認為是辨識變化區域相對較快的手段。它是對於兩個時相多譜段數據中同名像元的光譜灰度值施以除法運算。顯然,經過輻射配准後,在圖像中未發生變化的像元其比值應近似為1,而對於變化像元而言,比值將明顯高於或低於1。比值法可以部分地消除陰影影響,突出某些地物間的反差,具有一定的圖像增強作用。
2.1.3 圖像回歸法[1]
圖像回歸法是首先假定時相Ⅰ的像元值是另一時相Ⅱ像元值的一個線性函數,通過最小二乘法來進行回歸,然後再用回歸方程計算出的預測值來減去時相Ⅰ的原始像元值,從而獲得兩時相的回歸殘差圖像。
2.1.4 植被指數差值法[2]
植被指數差值法是用近紅外與紅光波段間的比值(植被指數)代替原始波段作為輸入數據進行差值運算來生成變化圖像。由於植物普遍對紅光強烈吸收和對近紅外光強烈反射,因此紅光和近紅外波段之間的比值有利於提高光譜差異。
2.1.5 主成分分析法[3]
(1)差異主成分法 兩時相的影像經糾正、配准之後,先對影像作相差取絕對值處理,從而得到一個差值影像。差值影像作主成分變換之後的第一分量應該集中了該影像的主要信息,即原兩時相影像的主要差異信息。這個分量可以被認為是變化信息而被提取出來,從而生成變化模板,作為指導下一步變化類型確認和邊界確定的參考信息。
(2)多波段主成分變換 由遙感理論可得知,地物屬性發生變化,必將導致其在影像某幾個波段上的值發生變化,所以只要找出兩時相影像中對應波段上值的差別並確定這些差別的范圍,便可發現土地利用變化信息。在具體試驗中將兩時相的影像各波段進行組合,成一個兩倍於原影像波段數的新影像,對該影像作主成分變換。由於變換結果前幾個分量上集中了兩個影像的主要信息,而後幾個分量則反映出了兩影像的差別信息,因此可以抽取後幾個分量進行波段組合來產生出變化信息。一般說來,在上述多波段主成分變換之後,採用0、1、2分量進行波段組合能較好地反映出新舊時相影像的變化部分。
(3)主成分差異法 本方法和差異主成分方法所不同之處在於影像作主成分變換與差值處理的順序不一樣。要求先對兩時相的影像作主成分變換,然後對變換結果作差值,取差值的絕對值為處理結果。在實際的試驗中,兩時相影像作主成分變換後相差的第一分量已經涵蓋了幾乎所有的變化信息。因此,可以認為這一分量屬於影像的變化信息。
2.1.6 變化向量分析法[1]
由於多時相遙感數據中任一像元矢量都可用多維測量空間中的一個點來表示(空間的維數等於原始波段數),通過對不同時相下的同名像元矢量進行相減所得到的變化矢量就可以用於描述該像元第一時相 t1 到第二時相 t2 期間在多維空間中所發生的位置變化。其中變化矢量的模代表了變化的強度,而方向則指示了發生變化的類型。設時相 t1、t2 圖像的像元灰度矢量分別為 G=(g1,g2,…,gk)T 和H=(h1,h2,…,hk)T,則變化矢量為:ΔG=G -H。ΔG 包含了兩幅圖像中所有變化信息。變化強度由變化矢量的模||ΔG||決定,||ΔG||越大,表明圖像的差異越大,變化發生的可能性越大。因此,提取變化和非變化像元,可根據變化強度||ΔG||的大小設定閾值來實現,即像元||ΔG||超過某一閾值時,即可判定為土地利用類型發生變化的像元;而變化的類型,可由ΔG的指向確定。
這種方法利用多頻段信息,在提取變化位置的同時可以得到變化類型信息,是一種較理想的演算法。當然,要用好變化向量分析法還取決於分析過程中變化/未變化閾值是否取值合理以及相關分類方法是否適當。
2.1.7 分類後比較法
分類後比較法是對兩期遙感影像進行監督或非監督分類,然後比較在各圖像系列同一位置上的分類結果,進而確定土地利用類型變化的位置和所屬類型。該方法可直接獲得變化類型信息,但如何選擇合適的分類方法提高分類精度是准確獲得變化信息類型的關鍵。
2.1.1至2.1.6均屬於光譜直接比較法,此方法對變化比較敏感,可以避免分類過程所導致的誤差,但需要進行嚴格的輻射標准化,排除大氣狀況、太陽高度角、土壤濕度、物候等「雜訊」因素對圖像光譜的影響,由於目前對各種干擾(尤其是物候)導致的輻射差異的校正方法仍不成熟,因此,只能通過選擇同一感測器、同一季相的數據來盡可能減小「雜訊」。同時光譜直接比較法只注重變化像元的提取,而不能提供變化中土地類型的轉化信息(如地類屬性)。與之相對照,分類後比較法對輻射糾正要求相對較低,適用於不同感測器、不同季相的數據的比較,同時該方法不僅可以提供變化信息,而且還能夠給出各時期的土地利用類型信息。但這種方法的最終精度受到影像分類精度的限制,而且它對影像的全部范圍都要進行分類計算而不管它們是否已經發生變化,這樣無疑大大增加了變化信息檢測的計算量。
在目前的土地利用遙感監測研究中,結合光譜直接比較法和分類後比較法的混合動態監測方法逐漸受到重視,並有了一些成功的案例研究。Jenson 通過對濕地變化的動態監測研究表明:先利用光譜直接比較探測變化區,再進行圖像分類確定變化類型的混合法是一種非常有效的變化檢測方法[4];Macleod和Congalton的研究也表明以差值法為基礎的混合動態監測法優於傳統分類後比較法[5]。這樣可以集兩者之所長,取得更好的監測效果。
2.2 基於單一感測器單時相遙感影像
無論是光譜直接比較法還是分類後比較法都是基於多個時相的遙感影像來進行土地利用變化監測。而當前期遙感影像無法或者難以獲得的情況下,依靠後期的單時相遙感影像與前期的土地利用現狀圖也可以進行動態監測,這就是採用將土地利用現狀圖疊加在遙感圖像上的方法來監測土地利用變化情況[6]。具體說來,是利用土地利用現狀圖中不變的明顯地物標志(如線狀地物交叉點)作為控制點對遙感圖像進行配准,然後將土地現狀圖疊加再校正後的遙感圖像上,檢查各圖斑是否吻合,若圖斑的角點有偏移,則發生變化。可通過遙感圖像辨識當前的土地利用類型,而土地利用現狀圖含有先期的土地利用類型信息,所以可以比較容易地辨識土地利用類型的變更情況,並可測算出變化圖斑的面積。若其中有不能確定的圖斑,可以輔以外業調查,以提高監測精度。
3 基於多源遙感的土地利用變化信息監測方法
不同感測器都具有各自的優勢,獲得的圖像各有所長,如美國陸地衛星(Landsat)TM圖像光譜信息豐富;法國SPOT衛星圖像具有全色通道而空間解析度高;SAR圖像不受光照條件的影響而且幾乎不受大氣和雲層的干涉,可用於探測地物的復介電常數和表面的粗糙度等等。利用不同感測器的多源遙感影像進行融合,可以使其優勢互補,在此基礎上的土地利用變化動態監測已成為國際遙感界研究的主題之一。以TM影像和SPOT影像為例,目前應用多光譜TM和全色SPOT數據融合的方法主要有LAB變換、HIS變換、線性復合與乘積運算、比值運算、BROVEY 變換、高通濾波變換(HPH)和主成分分析(PCA)等方法[7],經上述演算法融合後的圖像可以有效地同時保留SPOT高解析度圖像的精細紋理和TM多光譜圖像的豐富色彩信息,從而有利於提高圖像的空間解析度和光譜解析度,為發生變化的地類圖斑的提取提供良好的數據源基礎。
3.1 光譜特徵變異法[8]
針對基於多源遙感的土地利用變化監測,變化信息的提取方法除了2.1所述方法之外還可以選擇光譜特徵變異法。
同一地物反映在SPOT影像上的信息是與其反映在TM影像上的光譜信息一一對應的。因此作TM和SPOT影像融合時,才能如實地顯示出地物的正確光譜屬性。但如果兩者信息表現為不一致時,那麼融合後影像的光譜就表現得與正常地物有所差別,此時就稱地物發生了光譜特徵變異(例如同一位置,前期在遙感影像上呈現為綠色的麥地,後期新修道路在影像上呈現較亮的灰度,那麼疊加之後會呈現一條綠色的道路,與正常地物相異),這部分影像在整個的影像范圍內是不正常和不協調的,這些地物可以通過影像判讀的方法勾繪出來,這種變化信息提取的方法具有物理意義明顯、簡潔的特點。但是經過試驗發現,發生光譜特徵變異的地物在幾何尺寸上要足夠的大才能被人工目視發現。此外,該方法的效率還受到被監測區地物光譜特性的限制。
3.2 變化信息提取方法的選擇
根據土地利用動態監測項目所獲取的數據源,可將遙感數據組合分為下述幾種類型,針對不同的類型要採取相應的方法以獲取較好的效果。
3.2.1 具有兩時相的 TM 和 SPOT 數據
這種情況是最好的。在該條件下,先對兩時相的數據以某一糾正後的TM或SPOT影像(首先處理TM還是SPOT視數據的具體情況而定,原則是利於TM和SPOT數據的配准融合處理)為參考分別作糾正和配准處理,為保留並結合原始數據中紋理信息和光譜信息要融合相對應的TM和SPOT影像,在兩時相融合影像的基礎上採用主成分差異的方法來提取變化信息。另外還可以用新時相的 SPOT 影像與舊時相的 TM 影像進行融合生成光譜特徵變異影像來指導發現變化的區域。
3.2.2 具有兩時相的 TM 和一個時相的 SPOT 數據
在此數據源的基礎上,首先仍對某一時相的TM或SPOT數據作糾正處理,然後將其他時相的TM和SPOT數據都統一以這個糾正後的TM (SPOT)為參考影像作影像到影像的糾正和配准。之後,選擇光譜特徵變異的方法來尋找大部分的變化信息,藉助於兩時相的TM影像確認變化;此外,利用主成分分析的辦法對兩時相的TM數據進行處理,得到變化信息模板,將模板疊置在判讀影像上補充單一方法進行變化提取的遺漏。
3.2.3 具有兩時相的 SPOT 和一個時相的 TM 數據
通常,前面的數據預處理糾正配准部分同3.2.2相同,然後對其中交錯時相的TM和SPOT數據進行融合得到光譜特徵變異影像,藉助於兩時相的SPOT數據發現影像中紋理信息的變化,從而輔助提取影像中的變化信息部分。除此之外,兩時相的SPOT影像數據理論上說,可以直接作比較得到變化的部分,但是由於成像條件的不同,這樣直接比較的方法會導致產生很多偽變化信息,干擾了真正變化部分的提取。因此,首先要對原始SPOT影像進行去噪及輻射校正等預處理,然後才能用來提取變化的信息。
3.2.4 具有單時相的 SPOT 影像和另一時相 TM 影像的數據
首先要對SPOT和TM數據進行糾正處理,然後利用糾正後的SPOT和另一時相TM影像融合得到光譜特徵變異影像,並以此作為判讀變化信息的主要參考數據。此外,單時相的SPOT數據可以作為新增波段加入到原始的 TM 數據中去進行主成分分析來提取變化的信息,輔助發現漏判的變化圖斑。
利用遙感進行土地利用動態監測的方法非常多,這些方法各有自己的優勢和劣勢,實際工作中,要針對所擁有的數據源的情況,綜合各方面要求來選擇合適的方法,也可以綜合幾種方法取長補短以達到更好的監測效果。至於如何更有效地識別土地變化的類型以及如何提高分類的精度仍有很大的研究空間。
參考文獻
[1]盧珏.土地利用動態監測變化信息提取演算法評估[J].湖北農學院學報,2002,22 (5):394~396
[2]張銀輝,趙庚星.試論土地利用遙感動態監測技術方法[J].國土資源管理,2001,18 (3):15~18
[3]楊貴軍,武文波,陳步尚,夏春林.土地利用動態遙感監測中變化信息的提取方法[J].東北測繪,2003,26 (1):18~21
[4]Jensen J R,Cowen D J,Narumalani S,et al.An evaluation of coast watch change detection protocol in South Carolina [J].Photogram metric Engineering and Remote Sensing,1993,59 (6):1039~1046
[5]Macleod R D,Congalton R G.A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data [J].Photogram metric Engineering and Remote Sensing,1998,64 (3):207~216
[6]吳連喜,嚴泰來,張瑋,薛天民,程昌秀.土地利用現狀圖與遙感圖像疊加進行土地利用變更監測[J].農業工程學報,2001,17 (6):156~160
[7]張炳智,張繼閑,張麗.土地利用動態遙感監測中變化信息提取方法的研究[J].測繪科學,2000,25 (3):46~50
㈦ 矢量三角形的動態變化 相關解法.
將力按方向首尾相接形成一個閉合三角形,然後根據力的方向或大小的變化畫出閉合三角形的動態變化,直接可從圖中得出各個力的大小方向變化.
如圖所示
㈧ 在動態平衡分析中,什麼時候用矢量三角形法
三力都不變可方向不特殊,可用相似三角形法。三力中,有一個力不變,第二個力方向不變,可用動態圓法。