㈠ 請問掌握什麼規律可以蒙對數學題
高考數學選擇題10大蒙題技巧,掌握了,答題速度增快一倍!
在高考中,能得到更多的分數至關重要,如果遇到不會的選擇題,我們也可以選擇去蒙哦!比如高考數學,就有人總結了高考數學的蒙題技巧!
1.特值檢驗法
對於具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關於原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為
A.-5/4 B.-4/5 C.4/5 D.2√5/5
感謝您關注高考寶典 ,如您尚未關注,請點擊上方藍字「高考寶典」關注我們,獲取更多升學信息和學習方法。寶典君就在這等著大家,不見不散哦!
解析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B。
2.極值檢驗法
將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但採用極端性去分析,那麼就能瞬間解決問題。
3.剔除法
利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。
4.數形結合法
由題目條件,作出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。
5.遞推歸納法
通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。
6.順推破解法
利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。
例:銀行計劃將某資金給項目M和N投資一年,其中40%的資金給項目M,60%的資金給項目N,項目M能獲得10%的年利潤,項目N能獲得35%的年利潤,年終銀行必須回籠資金,同時按一定的回扣率支付給儲戶。為了使銀行年利潤不小於給M、N總投資的10%而不大於總投資的15%,則給儲戶回扣率最小值為()
A.5% B.10% C.15% D.20%
解析:設共有資金為α,儲戶回扣率χ,由題意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α
解出0.1≤χ≤0.15,故應選B。
7.逆推驗證法(代答案入題驗證法)
將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。
例:設集合M和N都是正整數集合N*,映射f:M→把集合M中的元素n映射到集合N中的元素2n+n,則在映射f下,象37的原象是()。
A.3 B.4 C.5 D.6
8.正難則反法
從題的正面解決比較難時,可從選擇支出發逐步逆推找出符合條件的結論,或從反面出發得出結論。
9.特徵分析法
對題設和選擇支的特點進行分析,發現規律,歸納得出正確判斷的方法。
例:256-1可能被120和130之間的兩個數所整除,這兩個數是:
A.123,125 B.125,127 C.127,129 D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。
10.估值選擇法
有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
總結:高考中的選擇題一般是容易題或中檔題,個別題屬於較難題,當中的大多數題的解答可用特殊的方法快速選擇。例如:估值選擇法、特值檢驗法、順推破解法、數形結合法、特徵分析法、逆推驗證法等都是常用的解法。解題時還應特別注意:選擇題的四個選擇支中有且僅有一個是正確的,因而在求解時對照選擇支就顯得非常重要,它是快速選擇、正確作答的基本前提。
1、在高考數學選擇題中,我們可以根據題干所給出的提示利用排除法先排除兩個一定錯誤的選項,再根據自身對於題干計算和理解從其它兩個選項中選出正確的一項。
2、在高考數學選擇題中,還有一個比較特別的蒙題技巧。就是你要是連著做了三道選擇題都是相同的選項,那你就需要在檢查一遍這三道選擇題了,因為不可能連著三道選擇題都是同樣的答案。
3、在高考數學選擇題中,我們還可以利用數據計算驗證,對於你拿不準的選項中,你可以在排除法之後進行其它選項中的數據驗證,如果在數據上有一定偏差,那就說明那個選項是錯誤的。
4、 在數學選擇題中還可能會有一些圖形題,我們要是對於這類題找不到解題方法時可以利用一些坐標類的知識點進行代入,不用但從圖形的角度去思考,可以從其他的角度去進行圖形題的思考,沒准就會找到適合的思路。
5、 在高考數學選擇題的類型中還有一些計算題,這類題會讓你求一些具體角度數據,你可以利用題干中所給出的相關數據知識,在不會的時候,在選項中能一些和選項相關的數據,例如如果題干中給出角度為60度你可以在選項中能一些90度或者120度,這是60度的倍數之類的相關角度。
蒙題也是一門學問,本人高三學生,數學蒙題成功率在70以上。首先,要明確一點,蒙題不能純粹蒙,你看過題就要有看題的效果。看完題後不會做,就先看選項,有些就可以排除,然後根據題設條件進行分析,有可能又會排除一些選項,這樣就容易多了。
若果一個也排除不了,那就琢磨選項,如果有關於課外的(課內很少出現的)答案就很有可能就是那個。如果選項是4個數,一般是第二大的是正確選項。單看選項,一般BD稍多,A較少。還有一點,選了之後就不要改了,除非你有90以上的把握。
數學蒙題技巧2
據我所知的有數學第一題一般不會是A;最後一題不會是A;選擇題的答案分布均勻;填空題不會就填0或1;答案有根號的,不選;答案有1的,選;三個答案是正的時候,在正的中選;有一個是正X,一個是負X的時候,在這兩個中選;題目看起來數字簡單,那麼答案選復雜的,反之亦然;上一題選什麼,這一題選什麼,連續有三個相同的則不;以上都不實用的時候選B。
在計算題中,要首先寫一答字。如果選項是4個數,一般是第二大的是正確選項。單看選項,一般BD稍多,A較少。還有一點,選了之後就不要改了,除非你有90以上的把握。和圖形有關的選擇填空可以取特值。
大題不會做,看上問的結論能不能用,還不會就照條件把你能想到的結論推出來,一般都有分,運氣好可以拿1大半。填空題仔細點,2分鍾沒思路就跳,不會做寫個最可能的答案,對的幾率也不很小。
2數學蒙題技巧守則
數學蒙題技巧守則
1、答案有根號的,不選
2、答案有1的,選
3、三個答案是正的時候,在正的中選
4、有一個是正X,一個是負X的時候,在這兩個中選
5、題目看起來數字簡單,那麼答案選復雜的,反之亦然
6、上一題選什麼,這一題選什麼,連續有三個相同的則不適合本條
7、答題答得好,全靠眼睛瞟
8、以上都不實用的時候選B
數學從易到難復查
填空題:慎重再慎重在數學的主觀題當中,填空題並不像後面的大題,要求給出具體的解題步驟,它只要求考生給出一個最後的答案。這就要求考生在答題時更加慎重,按部就班來進行解題。
大題:步驟需明確在大題(計算題和證明題)閱卷過程中,一般是過程分和結論分分開給的。因此考生在答題時還是應該將步驟寫明確,這樣不但能夠獲得步驟分,同時也利於自己後來的檢查。否則就跟填空題一樣,答案一錯就沒有分了。
自身:定位需理性近年來,高考當中出現了一些奇怪的現象,就是一些學生平時的表現還不錯,但他們的卷面得分就是上不去。這主要是學生自身的定位出現了問題。因為這些考生將過多的時間花在了難題上,這樣一來,在容易題上出錯的概率就大大增加。其實,難題在考試當中所佔的比例僅僅為20%。因此,考生在答題時不要有「一定要把難題啃下來」的非理性念頭。只要老老實實把容易題的分數拿全,那麼考試的分數就不會很低。
答題:大膽再大膽在不是很有把握的情況下,最好不要將原來的答案塗掉,可以將兩種答題方法都寫在考卷上。閱卷老師一般會按照得分高的那種方法給分的。
3高考數學選擇題蒙題竅門
數量原則
理想狀態:15道題,每題5個選項,A、B、C、D、E平均每個選項共出現3次。答案排列:3、3、3、3、3
實際狀態:每個選項在2——4的范圍內。
選項排列:3、3、3、2、4(此種狀態略多呈現)或3、2、4、2、4。即某一個選項為2個,某一個選項為4個
三不相同原則
即連續三個問題不會連續出現相同答案
答案排列不會出現ABCDE的英文字母排列順序
中庸之道
即數值優先選擇「中間量」選項,選項優先考慮BCD。在同一道題中優先考慮數值的「中間量」後考慮選項BCD。(如E選項對應數值為中間量時,優先從數值入手考慮)
出現諸如「以上結果都不對」的選項不予考慮
由提干給定信息入手,通過選項特徵排除錯誤選項
選項基本特徵如下:
單值與多值(例如提干出現「偶次方、絕對值、對稱性」等結果出現多值)
正值與負值(考前沖刺P12/25題根據提干排除負值)
有零與無零
區間的開與閉(看極端情況能否取等號)
正無窮與負無窮(通過極限考慮)
整數與小數(分數)
質數與合數
大於與小於
整除與不能整除
帶符號與不帶符號(例如根號、平方號等等)
少數服從多數原則
即看選項特徵,具有同一特徵多的選項優先考慮。
復雜表達式化簡題
一般情況下選項出現1、2、0、-1、-2的情況比較多
前後無定位,連續幾道題均不會都需猜蒙答案的情況
觀察已做完的選項情況,哪個選項少就將這幾道題全寫成這個選項。
答案往往出現在互為相反數、互為倒數、相加為一(概率題)的幾個選項。
㈡ 五年級上冊數學填空題解題技巧
五年級上冊數學填空題解題技巧如下:
將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。
由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算。
㈢ 初中數學解題方法歸納總結
想要在初中學好數學,學會解題是關鍵。那麼初中數學解題方法有哪些呢?為了幫助同學們更好的學習數學,我給大家整理了初中數學解題方法。
初中數學解題方法歸納
1. 觀察與實驗
( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。
( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。
2. 比較與分類
( 1 )比較法
是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。
( 2 )分類的方法
分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。
3 .特殊與一般
( 1 )特殊化的方法
特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。
( 2 )一般化的方法
4. 聯想與猜想
( 1 )類比聯想
類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。
通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:
( 2 )歸納猜想
牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。
歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。
5. 換元與配方
( 1 )換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。
我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。
( 2 )配方法
配方法是對數學式子進行一種定向變形(配成“完全平方”)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用“裂項”與“添項”、“配”與“湊”的技巧,從而完成配方。有時也將其稱為“湊配法”。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式
6. 構造法與待定系數法
( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。
( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。
7. 公式法與反證法
( 1 )公式法
利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:
( 2 )反證法是“間接證明法”一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。
初中學數學解題技巧
1. 數學探索題
所謂探索題就是從問題給定的題設條件中探究其相應的結論並加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。
條件探索題:解答策略之一是將題設和結論視為已知,同時推理,在演繹的過程中尋找出相應所需的條件。
結論探索題:通常指結論不確定不唯一,或結論需通過類比、引申、推廣,或給出特例需通過歸納得出一般結論。可以先猜測再去證明;也可以尋求具體情況下的結論再證明;或直接演繹推證。
規律探索題:實際就是探索多種解決問題的途徑,制定多種解題的策略。
活動型探索題:讓學生參與一定的社會實踐,在課內和課外的活動中,通過探究完成問題解決。
推廣型探索題:將一個簡單的問題,加以推廣,可產生新的結論,在初中教學中常見。如平行四邊形的判定,就可以產生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。
探索是數學的生命線,解探索題是一種富有創造性的思維活動,一種數學形式的探索絕不是單一的思維方式的結果,而是多種思維方式的聯系和滲透,這樣可使學生在學習數學的過程中敢於質疑、提問、反思、推廣。通過探索去經歷數學發現、數學探究、數學創造的過程,體會創造帶來的快樂。
2. 數學情境題
情境題是以一段生活實際、故事、歷史、游戲與數學問題、數學思想和方法於情境中。這類問題往往生動有趣,激發學生強烈的研究動機,但同時數學情景題又有信息量大,開放性強的特點,因此需要學生能從場景中提煉出數學問題,同時經歷了藉助數學知識研究實際問題的數學化過程。
如老師在講有理數的混合運算時,
3. 數學開放題
數學開放題是相對於傳統的封閉題而言的一種新題型,其特徵是題目的條件不充分,或沒有確定的結論,也正因為這樣,所以開放題的解題策略往往也是多種多樣的。
( 1 )數學開放題一般具有下列特徵
①不確定性:所提的問題常常是不確定的和一般性的,其背景情況也是用一般詞語來描述的,因此需收集其他必要的信息,才能著手解的題目。
②探究性:沒有現成的解題模式,有些答案可能易於直覺地被發現,但是求解過程中往往需要從多個角度進行思考和探索。
③非完備性:有些問題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在於尋求解答的過程中學生的認知結構的重建。
④發散性:在求解過程中往往可以引出新的問題,或將問題加以推廣,找出更一般、更概括性的結論。常常通過實際問題提出,學生必須用數學語言將其數學化,也就是建立數學模型。
⑤發展性:能激起多數學生的好奇性,全體學生都可以參與解答過程。
⑥創新性:教師難以用注入式進行教學,學生能自然地主動參與,教師在解題過程中的地位是示範者、啟發者、鼓勵者、合作者。
( 2 )對數學開放題的分類
從構成數學題系統的四要素(條件、依據、方法、結論)出發,定性地可分成四類;如果尋求的答案是數學題的條件,則稱為條件開放題;如果尋求的答案是依據或方法,則稱為策略開放題;如果尋求的答案是結論,則稱為結論開放題;如果數學題的條件、解題策略或結論都要求解題者在給定的情境中自行設定與尋找,則稱為綜合開放題。
從學生的學習生活和熟悉的事物中收集材料,設計成各種形式的數學開放性問題,意在開放學生的思路,開放學生潛在的學習能力,開放性數學問題給不同層次的學生學好數學創設了機會,多種解題策略的應用,有力地發展了學生的創新思維,培養了學生的創新技能,提高了學生的創新能力。
( 3 )以數學開放題為載體的教學特徵
①師生關系開放:教師與學生成為問題解決的共同合作者和研究者
②教學內容開放:開放題往往條件不完全、或結論不完全,需要收集信息加以分析和研究,給數學留下了創新的空間。
③教學過程的開放性:由於研究的內容的開放性可以激起學生的好奇心、同時由於問題的開放性,就沒有現成的解題模式,因此就會留下想像的空間,使所有的學生都可參與想像和解答。
( 4 )開放題的教育價值
有利於培養學生良好的思維品質;
有助於學生主體意識的形成;
有利於全體學生的參與,實現教學的民主性和合作性;
有利於學生體驗成功、樹立信心,增強學習的興趣;
有助於提高學生解決問題的能力。
4. 數學建模題(初中數學建模題也可以看作是數學應用題)
數學新課程標准指出 : 要學生會應用所學知識解決實際問題 , 能適應社會日常生活和生產勞動的基本需要。初中數學的學習目的之一 , 就是培養學生解決實際問題的能力 , 要求學生會分析和解決生產、生活中的數學問題 , 形成善於應用數學的意識和能力。從各省市的中考數學命題來看 , 也更關注學生靈活運用數學知識解決實際問題能力的考查 , 可以說培養學生解答應用題的能力是使學生能夠運用所學數學知識解決實際問題的基本途徑之一
初中數學應用問題類型
( 1 )探求結論型數學應用問題
根據命題中所給出的條件,要求找出一個或一個以上的正確結論
( 2 )跨學科的數學應用問題
①數學與物理
②數學與生化
以上兩題是與生物和化學有關的問題,體現了數學在生化學科的應用。
總之,數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。中考數學應用問題熱點題型主要包括生活、統計、測量、設計、決策、銷售、開放探索、跨學科等等,中考在強化學生應用意識和應用能力方面發揮及其良好的導向功能。這就要求我們在平時教學中善於挖掘課本例題、習題的潛在的應用功能。巧妙地將課本中具有典型意義的數學問題回歸生活、生產的原型,創設一個實際背景,改造成有深刻數學內涵的實際問題,以增強應用意識,發展數學建模能力。
四、掌握初中數學解題策略提來提高數學學習效率
(1)認真分析問題,找解題准切入點
由於數學問題紛繁復雜,學生容易受定勢思維的影響,這樣就會響解題思路造成很大的影響。為此,這時教師要給予學生正確指導,幫助學生進行思路的調整,對題目進行重新認真的分析,將切入點找准後,問題就能游刃而解了。例如:已知:AB=DC,AC=DB。求證:∠A=∠D。
此題是一道比較經典的證明全等的題型,主要是對學生對已知條件整合能力和觀察識圖能力的鍛煉。然而,從圖形的直觀角度來證明∠AOC=∠DOB,這樣的思路只會落入題目所設下的陷阱。為此,在對此題的審題時,教師要引導學生注意將題目已知的兩個條件充分結合起來考慮,提醒學生可以適當添加一定的輔助線。
(2)發揮想像力,藉助面積出奇制勝
面積問題是數學中常出現的問題,在面積定義及相關規律中,蘊含著深刻的數學思想,如果學生能充分了解其中的韻味,能夠熟練的掌握其中的數學論證思維,就有可能在其他數學問題中藉助面積,出奇制勝順利實現解題。由於幾何圖形的面積與線段、角、弧等有密切的聯系,所以用面積法不但可證各種幾何圖形面積的等量關系,還可證某些線段相等、線段不等、角的相等以及比例式等多種類型的幾何題。例1、 若E、F分別是矩形ABCD邊AB、CD的中點,且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長之比為( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1
由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設矩形EFDA與矩形ABCD的相似比為k。因為E、F分別是矩形ABCD的中點,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的寬與長之比為1∶2;故選(C)。
此題利用了“相似多邊形面積的比等於相似比平方”這一性質,巧妙解決相似矩形中的長與寬比的問題。事實上,藉助面積,形成解題思路的過程,就是學生思維轉換的過程。
(3)巧取特殊值,以簡代繁
初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其繁甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。
例2、分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本題是二元多項式,從常規思路進行解題也未嘗不可,但是從鍛煉學生思維能力的角度出發,教師可以在立足常規解法的基礎上,引導學生進行其他方面解題思路的探索。如從巧取特值的角度出發,把其中的一個未知數設為0,則可以暫時隱去這個未知數,而就另一個未知數的式子來分解因式,達到化二元為一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。當把兩次分解的一次項的系數1、1;-2、4。可知,1×4+(-2)×1正好等於原式中xy項的系數。因此,綜合起來有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其實,用特殊值法,也叫取零法。這種方法在因式分解中可以發揮很大的作用,幫助學生找到其他的解題思路。一般來說其步驟是:A、把多項式中的一個字母設為0所得的結果分解因式,B、把多項中的另一個字母設為0所得的結果分解因式,C、把上兩步分解的結果綜合起來,得出原多項式的分解結果。但要注意:兩次分解的一次因式的常數項必須相等,如本題中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否則,在綜合這兩步的結果時就無所適從了。
(4)巧妙轉換,過渡求解法
在解數學題時,即要對已知的條件進行全面分析,還要善於將題目中的隱性條件挖掘出來,將數學中各知識之間的聯系巧妙的運用起來,用全面、全新的視角來解決問題。
例如:已知:AB為半圓的直徑,其長度為30 cm,點C、D是該半圓的三等分點,求弦AC、AD與弧CD所圍成的圖形的面積。
本題需要解出的是一個不規則圖形的面積,可能大多數同學的思維就是將CD連結起來,將其轉變為一個角形和弓形,兩者面積之和就為該題需要解決的問題。這時,教師就要引導學生學會對半徑這一已知條件加以利用,幫助其將另外兩條OC、OD輔助線連結起來,將題目要求解的不規則圖形的面積,轉化成求扇形OCD的面積,這樣該題的解題思維就能一目瞭然了。
綜上所述,初中數學解題存在很強的靈活性。有的數學題不只一種解法,而有多種解法,有的數學題用常規方法解決不了,要用特殊方法。因此,解數學題要注意它的靈活性和技巧性。解題技巧在升學考試中至關重要,不能忽視。初中數學教師要注意對解題技巧的鑽研,並鼓勵學生發散思維,尋找解題技巧,提高解題效率,增強學習數學的能力。
猜你喜歡:
1. 初中數學規律題公式
2. 初中數學學習方法與技巧
3. 關於初中數學的學習方法有哪些
4. 初一數學解題技巧
5. 初中數學學習方法的六大要點
㈣ 做數學題的方法和技巧
中小學數學,還包括思維數學,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?文都教育建議家長們,培養孩子從小就習慣用這些思維和方法來解題!
形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。
形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。
實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。
這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。
圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。
在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。
用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。
探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。
第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。
觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出
乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。
「觀察」的要求:
第一、觀察要細致、准確。
第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。
驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。
(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。
(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。
(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。
(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。
抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學、中學數學要培養學生初步的抽象思維能力,重點突出在:
(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。
(2)思維方法上,應該學會有條有理,有根有據地思考。
(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。
(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地
推理。
對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
排除法
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
解題技巧
選擇題答題攻略
1、剔除法
利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。
2、特殊值檢驗法
對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
3、極端性原則
將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。
4、順推破解法
利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。
5、逆推驗證法
將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。
6、正難則反法
從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。
7、數形結合法
由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。
8、遞推歸納法
通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。
9、特徵分析法
對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。
10、估值選擇法
有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
填空題答題攻略
數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。
1、直接法
這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。
2、特殊化法
當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。
3、數形結合法
藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。
4、等價轉化法
通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。
㈤ 數學題,這道題怎麼做
數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。那麼接下來給大家分享一些關於做數學題有何技巧方法,希望對大家有所幫助。
做數學題有何技巧方法
1. 觀察與實驗
( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。
( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。
2. 比較與分類
( 1 )比較法
是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。
( 2 )分類的方法
分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。
3 .特殊與一般
( 1 )特殊化的方法
特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。
( 2 )一般化的方法
4. 聯想與猜想
( 1 )類比聯想
類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。
通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:
( 2 )歸納猜想
牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。
歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。
5. 換元與配方
( 1 )換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。
我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。
( 2 )配方法
配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式
6. 構造法與待定系數法
( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。
( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。
7. 公式法與反證法
( 1 )公式法
利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:
( 2 )反證法是「間接證明法」一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。