㈠ 技術分享 | 澆口位置分析的應用方法和技巧
正確放置澆口是決定零件最終質量的關鍵因素之一,這一過程受到零件設計、用途、美觀以及工具結構等多種因素的影響。澆口位置分析是為零件推薦注射位置的工具,適用於所有分析技術,通常作為完整填充+保壓填充分析的初始步驟。
在運行澆口位置分析時,用戶可以選擇兩種演算法:高級澆口定位器演算法和澆口區域定位器演算法。高級澆口定位器演算法是默認演算法,能夠基於最低壓力建議最多10個澆口位置,用戶可自定義分析時的澆口數量。此演算法無需指定材料屬性或工藝設置條件即可使用。高級澆口定位器演算法適用於所有網格類型,其主要標準是盡可能降低填充壓力,同時避免將澆口放置在薄區域,其默認厚度公差為25%。澆口通常放置在零件中心附近,以減少流動長度。另一方面,澆口區域定位器演算法基於流動平衡,為用戶提供一個建議的澆口位置,用戶可指定材料屬性或工藝設置條件,或更改默認設置以滿足特定分析需求。此演算法會確定在已存在注射位置後的下一個最佳澆口位置。
澆口位置分析的結果多樣,高級澆口定位器演算法的可用結果包括分析日誌、流動阻力指示器、澆口匹配性以及位於建議澆口位置的注射位置方案。這些結果可以幫助用戶了解澆口的分布、流動阻力和匹配性。澆口區域定位器的結果則包括分析日誌和最佳澆口位置圖。分析日誌提供了建議放置澆口的節點信息,而最佳澆口位置圖則使用0.1至1之間的比例表示位置,推薦的最佳位置評級為最佳位置,但可能有多個具有相似匹配性的位置。
兩種演算法各有優勢和局限性。高級澆口定位器演算法更為靈活,允許用戶確定發現的澆口數,以及定義無法放置澆口的限制零件區域,這是將其作為默認演算法的原因之一。然而,如果填充壓力小於不對稱位置的壓力,對稱零件中的澆口位置可能不在對稱位置。相比之下,澆口區域定位器演算法只會發現一個澆口位置,且發現的位置通常位於零件的對稱位置。此演算法在確定澆口位置時考慮了更多的流動相關因素。最終選擇的澆口位置可能與演算法確定的位置不同,因為演算法無法考慮所有限制因素,但其提供的信息仍然非常有價值。
㈡ 初一數學應用題解題方法和技巧
初一數學應用題解題方法和技巧如下:
1.圖解分析法:
這實際是一種模擬法,具有很強的直觀性和針對性,數學教學中運用得非常普遍。如工程問題、速度問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之。
3.直觀分析法:
如濃度問題,首先要講清百分濃度的含義,同時講清百分濃度的計算方法。
其次重要的是上課前要准備幾個杯子,稱好一定重量的水,和好幾小包鹽進教室,以便講例題用。
㈢ 如何提高小學應用題解題方法與技巧
(1)學會認真閱讀應用題,理解題意,分清條件和問題;(2)學會運用動作、圖解、畫圖等方法表示應用題的條件和問題;(3)學會運用綜合法或分析法分析應用題。通過解析的實踐找出題中的數量關系,從而進行判斷、推理、選擇演算法。 學生不能正確地理解題意,不會邏輯地進行分析、推理,從而判斷運演算法則,在列式計算時就會發生種種錯誤。即使憑著個別詞句的暗示碰對了,也是偶然的。因此學生會正確地分析應用題,能開列條件和問題,找出表明數量關系的詞語,並由此而進行判斷推理是列式計算的基礎。分析應用題不僅有助於列式計算的理解,而且能夠發展學生的邏輯思維,培養學生的唯物辯證觀點。應用題來自實際生活,在數學實踐中雖然僅僅是從數量關系方面來培養,實際上是在培養學生分析實際生活問題的能力。按辯證法即:具體地分析問題,具體地解決問題。教師培養學生學會分析,實際是培養學生分析問題產生的條件與解決問題的條件,學生越是善於具體地分析問題和解決問題,就越能增長辯證思維的能力。我們知道,任何一問題產生的條件與解決問題的條件都可有多有少,實際上就在分析一系列的矛盾。
㈣ 小學應用題 解答技巧是什麼
常用
解題方法
掌握解題步驟是解答
的第一步,要想掌握解答應用題的技能技巧,還需要掌握解答應用題的基本方法。一般可以分為綜合法、分析法、圖解法、演示法、消元法、假定法、逆推法、列舉法等。在這里介紹這些方法,主要是幫助同學掌握在遇到應用題時,如何去思考,怎樣打開自己的智慧之門。這些方法都不是孤立的,在實際解題中,往往是兩種或三種方法同時用到,而且有許多問題,可以用這種方法分析,也可以用那種方法分析。問題在於掌握了各種方法後,可以隨著題目中的
靈活運用,切不可死記硬背,機械地套用解題方法。 1.綜合法
從已知條件出發,根據
先選擇兩個已知數量,提出可以解答的問題,然後把所求出的數量作為新的已知條件, 與其它的已知條件搭配,再提出可以解答的問題,這樣逐步推導,直到求出所要求的結果為止。這就是綜合法。在運用綜合法的過程中,把應用題的已知條件分解成可以依次解答的幾個簡單應用題。
網
例1.一個養雞場一月份運出
13600隻,二月份運出的
是一月份的2倍,三月份運出的比前兩個月的總數少800隻,三月份運出多少只?
綜合法的思路是:
算式:(13600+13600×2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份運出40000隻。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工廠有一堆煤,原計劃每天燒3噸,可以燒96天。由於改進燒煤方法,每天可節煤0.6噸,這樣可以比原計劃多燒幾天?
解答這道題,綜合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原計劃多燒24天
用心解救行了,不要考慮太多
小學的題都不難..
㈤ 應用題怎麼解答,有什麼技巧
【知識方法歸納】
1.列方程解比較容易的兩步應用題
(1)列方程解應用題的步驟
①弄清題意,找出未知數並用x表示;
②找出應用題中數量間的相等關系,列方程;
③解方程;
④檢查,寫出答案。
(2)列方程解應用題的關鍵
弄清題意後,找出應用題中數量間的相等關系,恰當地設未知數,列出方程。
(3)運用一般的數量關系列方程解應用題
①列方程解加、減法應用題。如:
甲乙兩人年齡的和為29歲,已知甲比乙小3歲,甲、乙兩人各多少歲?
數量間的等量關系:
甲的年齡 + 乙的年齡 = 甲乙二人的年齡和
解:設甲的年齡是x歲,則乙的年齡為:(x+3)歲。
x+(x+3)=29
x+x+3=29
2x=29-3
x=26 2
x=13……甲的年齡
13+3=16(歲)……乙的年齡
答:甲的年齡是13歲,乙的年齡是16歲。
②列方程解乘、除法應用題。如:
學校圖書館買來故事書240本,相當於科技書的3倍,買來科技書多少本?
科技書的本數 3 = 故事書的本數
解:設買來科技書x本
3x=240
x=80
答:買來科技書80本。
(4)用計算公式、性質、數位及計數單位等做數量間的等量關系,列方程解應用題
①一長方形的周長是240米,長是寬的1.4倍,求長方形的面積。
( 長 + 寬 ) 2=周長
解:設寬是x米,則長是(1.4x)米。
(1.4x+x) 2=240
2.4x=240 2
x=120 2.4
x=50……長方形的寬
50 1.4=70(米) ……長方形的長
70 50=3500(平方米)
答:長方形的面積是3500平方米。
②三角形ABC中,角A是角B的2倍,角A與角B的和比角C小18°。求三個角的度數。這是一個什麼三角形?
角A + 角B + 角C = 180度
解:設角B是x度,
則角A是(2x)度,角C是[(2x+x)+18]度。
2x+x+[(2x+x)+18]=180
6x+18=180
6x=180-18
x=162 6
x=27……角B的度數
27 2=54(度)……角A的度數
54+27+18=99(度)……角C的度數
答:角A是54度,角B是27度,角C是99度。
因為:角B<角A<角C,90°<角C<180°,所以這個三角形是鈍角三角形。
③一個兩位數,十位數字與個位數字的和是6。若以原數減去7,十位數與個位數字相同,求原數。
十位上的數字 個位上的數字
解:設原數的個位數字為x。則原數十位上的數字為:6-x;若從原數中減去7,則個位上的數字變為:10+x-7、十位上的數字變為:6-x-1。
6-x-1=10+x-7
5-x=3+x
2x=2
x=1……原數的個位數字
6-1=5……原數的十位上的數
因此,原數是:51。
2.列方程解二、三步計算的應用題
廣水電影院原有座位32排,平均每排坐38人;擴建後增加到40排,可比原來多坐584人。擴建後平均每排可以坐多少人?
解:設擴建後平均每排坐x人。
x 40-38 32=584
40x-1216=584
40x=584+1216
x=1800 40
x=45
答:擴建後平均每排可以坐45人。
3.列方程解含有兩個未知數的應用題
某班學生合買一種紀念品,每人出1元,多4元6角;每人出9角,就差5角。求這件紀念品多少錢?這個班共有多少名學生?
解:設這個班共有x名學生
x-4.6=9 10 x+5 10
x-4.6=0.9x+0.5
0.1x=5.1
x=51……這個班學生人數
51-4.6=46.4(元) ……紀念品的單價
答:這件紀念品46.4元;這個班共有學生51名。
4.用方程解和用算術法解應用題的比較
用方程解應用題和用算術法解應用題有什麼區別,它們之間的主要區別在於思路不同。
用方程解應用題,要設未知數x,並且把未知數x與已知數放在一起,分析應用題所敘述的數量關系,再根據數量關系和方程的意義,列出方程式。
用算術法解應用題,要把已知數集中起來,加以分析,找出已知數與未知數之間的聯系,列出算式表示未知數。例如:
小華身高160厘米,比小蘭高15厘米。小蘭的身高是多少厘米?
用方程解:
解:設小蘭的身高x厘米
160-x=15
x=160-15
x=145
或:x+15=160
x=160-15
x=145
用算術法解:
160-15=145
通過比較,同學們可以看出,這兩種方法的主要區別是未知數參加不參加到列式之中。列算術式,是根據題中的條件,由已知推出未知,用已知數之間的關系來表示未知數。未知數是運算的結果,已知與未知數用等號隔開。列方程式,是根據題目敘述的順序,未知數參加列式,未知數與已知數用運算符號相連接,從整體上反映數量關系的各個方面,所以,解題方式靈活多樣,適用面廣,用來解答那些反敘的問題更顯得方便。
【典型範例剖析】
例1 甲乙兩桶油,甲桶里有油45千克,乙桶里有油24千克,問從甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?
分析:根據變動以後「甲桶里油的重量是乙桶的1.5倍」,可以列出等量關系式:
現在乙桶里油的重量 1.5 = 現在甲桶里油的重量
設從甲桶里倒x千克的油到乙桶里,那麼,現在甲桶里的油是(45-x)千克,現在乙桶里的油是(24+x)千克。
解:設從甲桶里倒x千克油到乙桶里。
(24+x) 1.5=45-x
36+1.5x=45-x
36+1.5x+x=45
36+2.5x=45
x=(45-36) 2.5
x=3.6
答:從甲桶里倒3.6千克的油到乙桶里,才能使甲桶里油的重量是乙桶的5倍。
例2 一位三位數,個位上的數字是5,如果把個位上的數字移到百位上,原百位上的數字移到十位上,原十位上的數字移到個位上,那麼所成的新數比原數小108,原數是多少?
分析:原三位數中只知道個位數字,百位和十位上的數字都不知道。如果設原三位數中的百位數字與十位數字拼成的二位數為x,則原三位數可表示為「10x+5」,那麼新數就可以表示為「5 100+x」。
解:設原三位數中的百位數字與十位數字拼成的二位數為x,可得方程:
10x+5=5 100+x+108
10x-x=500+108-5
9x=603
x=67
10 67+5=675……原三位數
答:原三位數是675。
例3 某校附小舉行了兩次數學競賽,第一次及格人數是不及格人數的3倍還多4人,第二次及格人數增加5人,正好是不及格人數的6倍,問參加競賽的有多少人?
分析:本題所求的參賽人數包括了及格的和不及格的人數,而第二次的參賽人數與第一次參賽人數有直接關系的條件,總人數又不變。所以我們設第一次參賽的不及格人數為x人,那麼第一次參賽及格的人數可以用「(3x+4)」人來表示,總數是(4x+4)人,第二次參賽及格的人數是(3x+4+5)人,不及格的人數是(x-5)人,根據「第二次及格人數是不及格人數的6倍」,這一等量關系,可列方程。
解:設第一次參賽不及格的人數為x,依據題意可得方程:
3x+4+5=(x-5) 6
3x+9=6x-30
3x=39
x=13
則 4x+4=13 4+4=56……參加競賽的人數
答:參加競賽的有56人。
【易錯題解舉例】
例1 吉陽村有糧食作物84公頃,比經濟作物的4倍多2公頃,經濟作物有多少公頃?
錯誤:設經濟作物有x公頃
x=(84-2)÷4
x=82÷4
x=20.5
答:經濟作物有20.5公頃。
分析:這題列出的式子是一個算術式,不是方程。錯誤在於沒有弄清方程和算術式的區別。算術式是由已知數和運算符號組成的,用來表示未知數,如本題的「x=(84-2) ÷4」;而在方程里,未知數則是參加運算的,本題中的「x」則沒有參加運算。
改正:設經濟作物有x公頃
4x+2=84(或4x=84-2)
4x=82
x=20.5
答:經濟作物有20.5公頃。
例2 食堂運來一批煤,原計劃每天燒210千克,可以燒24天。改進爐灶後這批煤可燒28天。問:改進爐灶後平均每天比原計劃節約多少千克?
錯誤:設每天比原計劃節約x千克
28x=210 24
x=180
210-180=30(千克)
答:改進爐灶後平均每天比原計劃節約30千克。
分析:題中所設未知數x與方程式中的x所表示的意義不同。題目中的方程式的「x」所表示的是「改進爐灶後平均每天燒煤數」,並不表示「節約」的數。本題可以採用「間接設未知數法」或「直接設未知數法」。
改正:(1)間接設未知數
解:設改進爐灶後每天燒煤x千克,則每天比原計劃節約(210-x)千克。
28x=210 24
28x=5040
x=180
210-x=210-180=30
(2)直接設未知數
解:設改進爐灶後平均每天比原計劃節約x千克。
(210-x) 28=210 24
210-x=180
x=210-180
x=30
答:改進爐灶後平均每天比原計劃節約30千克。
例3 王蘭有64張畫片,雷江又送給她12張,這時王蘭和雷江的畫片數相等。雷江原有畫片多少張?(用方程解)
錯誤:設雷江原有畫片x張
x-12=64
x=76
分析:雷江送12張畫片給王蘭後,兩人的畫片數才相等。也就是說,雷江減少12張,王蘭增加12張之後,他們的畫片數才同樣多。此解法把等量關系弄錯了,誤認為雷江的畫片減少12張後與王蘭原有的畫片數相等。
改正:設雷江原有畫片x張。
x-12=64+12
x=76+12
x=88
答:雷江原有畫片88張。
【解題技巧指點】
1. 列方程解應用題時,往往列出來的是一個算術式,誤以為是方程。如:廣水市吉陽村有糧食作物84公頃,比經濟作物的4倍多2公頃,經濟作物有多少公頃?
解:設經濟作物有x公頃
x=(84-2) 4
x=82 4
x=20.5
答:經濟作物有20.5公頃。
本題中的「x=(84-2) 4」是一個算術式。出現上述錯誤,原因在於沒有弄清方程式和算術式的區別。算術式是由已知數和運算符號組成的,用來表示未知數;而在方程里,未知數則是參加運算的。本題的方程應該列為:
4x+2=84或4x=84-2或84-4x=2
2.按照題意,恰當地設未知數。如:第一教工食堂運來一批煤,原計劃每天燒煤210千克,可燒24天,改進爐灶後這批煤可燒28天。問:改進爐灶後平均每天比原計劃節約多少千克?
設未知數時一般有兩種方法:一種是直接設未知數為x,題目中問什麼,就設什麼為x;另一種是間接設未知數為x,再通過這個量與所求問題的關系,求出應用題中要求的未知量。
如果按直接設未知數為x的方法解答,那麼本題中所列方程應該是:
解:設每天比原計劃節約x千克煤
(210-x) 28=210 24
210-x=180
x=210-180
x=30
如果採用間接設未知數x的方法:
解:設改進爐灶後每天燒煤x千克,則每天比原計劃節約(210-x)千克。
28x=210 24
x=180
210-180=30(千克)
答:每天比原計劃節約30千克。
老了不死;參考資料:根據網路搜集