❶ 怎麼做商業數據分析
商業數據分析一般分為5個步驟:收集、清洗、對比、細分、溯源。
數據收集
當我們在做數據分析時,第一步要解決的問題肯定就是數據源的問題。Allen通常把數據分為二大類。第一類是直接能獲取的數據,通常都是內部數據。無非就是從網站後台或者是自己家的資料庫裡面導。第二類就是外部數據,需要經過加工整理後得到的數據。
典型的數據來源有:網路指數、阿里指數、梅花網、cnzz等。
2. 數據清洗
清洗數據(篩選、清除、補充、糾正)的目的是從大量的、雜亂無章、難以理解的數據中抽取並推導出對解決問題有價值、有意義的數據。清洗後、保存下來真正有價值、有條理的數據,為後面做數據分析減少分析障礙。
3. 數據對比
對比,是數據分析的切入點。因為如果沒參照物,數據就沒有一個定量的評估標准。通常情況下我們從二個點去切入進行數據對比分析:1.橫向對比 2.縱向對比
橫向對比,與行業平均數據,與競爭對手的數據進行比對。舉個粟子,比如你家的APP用戶留存率是60%,而行業平均留存是70%或競爭對手的用戶留存率是70%,那就說明你家的產品在留存率方面有待加強!
縱向對比,與自家產品的歷史數據進行對比,圍繞著時間軸來對比。還是用用戶留存率來進行舉粟子吧,比如,APP改版前30天,新用戶留存率是70%的,而新版APP發布後,新用戶留存率降了10%或者升了5%,這就產生了問題,到底是那些因素導致數據產生了異常呢?
4. 數據細分
數據對比發現了異常,我們當然想知道是什麼原因導致的。這里就要用到數據細分了,數據細分通常情況下先分緯度,再分粒度。
何謂為緯度?按時間分類就是時間緯度,按地區分類就是地域緯度,按來路分類就是來源緯度,按受訪頁面分類就是受訪緯度。今天APP訪問量漲了5%,咋回事不知道,你細分一看,大部分網頁都沒漲,某個頻道某個活動頁漲了300%,這就清楚了,這就是細分最簡單的範例,其實很多領域都通用。
粒度是什麼?你時間緯度,是按照天,還是按照小時?這就是粒度差異,你來路緯度,是來路的網站,還是來路的url,這就是粒度的差異;緯度結合粒度進行細分,就可以將對比的差異值逐級鎖定問題區域,就可以更容易地尋找出發生問題的原因了。
5.數據溯源
通常情況下,通過數據細分就能分析出大多數問題的原因並推導出結論了。但也有特殊的情況,即使具體到粒度了也得不出有說服力的結論。
這時候我們再進一步,通過數據溯源就能找出問題的原因。依據鎖定的這個緯度和粒度作為搜索條件,查詢所涉及的源日誌,源記錄,然後基於此分析和反思用戶的行為,往往會有驚人的發現。
❷ 做數據分析時的常用方法有哪些
數據分析的三個常用方法有數據趨勢分析、數據對比分析及數據細分分析。
1、數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
2、數據對比分析
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
3、數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
❸ 電商數據分析常用方法有哪些
1.對比分析
橫向對比:簡單的說就是和誰對比?假如說我們上個月店鋪的成交額增長了30%,那麼我們是不是應該開心呢?
這里我們還要參考競爭對手的成交額,數據時代,我們可以很輕易的拿到競爭對手的相關數據。
縱向對比:我們可以把近15天的成交額以線條的形式顯示出來,這樣就可以很清楚的看到近期的成交額是否達到預期,有沒有下降趨勢,當然我們也可以以季度、月或周為單位。
2.轉化分析
這里牽涉到一個問題,評判一家電商企業需要用到的一些日常統計指標:
店鋪的目標用戶數量:一家店鋪的成交量,反映的是這家店鋪對於市場的影響以及用戶對於產品的滿意度。
平均消費金額:店鋪每年平均每位用戶消費了多少,以此來定位目標人群,確定是否達到盈利的指標。
用戶的復購率:判別產品滿意度,假如用戶購買過一次後,還會購買第二次,說明用戶對於你的產品還是很滿意的,這樣既節省了市場推廣費用,用戶也會推薦給更多朋友來夠買。
3.留存分析
我們通過活動等形式把用戶引流到我們的流量池裡,但是經過一段時間後,用戶可能就會慢慢的流失了。那些留下來或者經常訪問我們店鋪的用戶稱之為留存。
我們常常用到的日活躍用戶量、月活躍用戶量、季度活躍用戶量,來檢測我們店鋪的流量。有的時候可能會看到我們的日活,在一段時期內都是逐漸增加的,以為是非常好的現象,但是如果沒有做留存分析的話,這個結果很可能是一個錯誤的。
留存是產品的核心,用戶只有留下來,我們的產品才能不斷增長。如果我們什麼都不做的話,用戶很快的就流失了。
4.產品比價
大部分電商公司會頻繁搞促銷,一般來說每次打的旗幟無非是全網最低,但是如何才能確定是全網最低呢?
這時候需要我們去搭建一個比價系統,這個比價系統的目的主要是為了去抓取各大電商平台商品的價格。通過各大電商平台的價格以及優惠額,來制定你自己的策略。
關於電商數據分析常用方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❹ 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
❺ 如何著手商業數據分析
商業分析的流程一般分為5個步驟
明確問題-拆解問題-安排工作任務-推進工作任務-輸出分析報告
1、明確問題
首先在解決問題前,我們一定要知道問題到底是什麼?這樣我們就知道了後期工作的方向,避免了以後出現的沒必要的爭論。對於如何明確問題,可以用SMART法則來說明
S——Specific 具體明確的,不能將問題說得太抽象
比如小米手機想要賣的好,就不能簡單的說成小米手機要做成讓每個人都喜歡的產品,而是應該說成小米手機的出貨量要達到去年的150%
M——Measurable 可衡量的,不管是問題的本身還是目標要量化出來
還是小米的例子,出貨量達到到去年的150%,那麼150%就是可以量化的標准
A——Action-oriented 行動導向 就是說明問題時,必須要有解決的方向
比如小米通過銷售改進、加大市場推廣、增強產品研發能力這三種方式使出貨量要達到去年的150%。
R——Relevant 相關聯的,行動與問題存在相關性
小米通過銷售改進、加大市場推廣、增強產品研發能力對提升出貨量是有相關性的,不能說小米通過進入筆記本電腦領域的方式去增加手機的出貨量,開發筆記本電腦這個產品線這個行動跟提升手機出貨量沒有任何關聯
T——Time-bound 時間限制
計劃使出貨量增加到去年的150%,可能過了兩年手機的出貨量也沒有提升到150%,所以明確時間尤其重要 ,比如我計劃用8個月的時間使手機出貨量達到去年的150%。當然,時間的限定一定要從實際情況出發,要具備一定的合理性
2、拆分問題
拆分問題需要用到邏輯樹模型
邏輯樹分析模型顧名思義,就是把一個已知明確的問題作為樹干,分析哪些問題跟這個問題有關,把相關的問題作為樹枝加入到樹干當中,由此不斷向下拓展,就會將問題拓展成一個邏輯樹
使用邏輯樹模型的優點:
● 保證了解決問題的完整性
● 理清了所有的思路
● 避免了重復和無關的思考
除此之外,還有2個法則能更好的幫你理清思路,分別是MECE分析法和二八法則
MECE分析法即把一個工作項目分解為若干個更細的工作任務的方法
它主要有兩條原則:
完整性
分解工作的過程中不要漏掉某項,要保證完整性
比如市場推廣和提升產品研發能力就是2個不同的解決問題方向,漏掉某一項都會使解決問題的方向不完整
獨立性
每項工作之間要獨立,每項工作之間不要有交叉重疊
比如小米手機想要增加出貨量可以提升產品研發能力和把手機設計得更好看,那麼這2個子問題就重合了,因為產品研發能力包含了手機設計能力
二八法則,通俗理解就是在任何一組東西中,最重要的只佔其中一小部分,約20%,其餘80%盡管是多數,卻是次要的
邏輯樹分析模型中也是一樣,要時刻關注重點問題,對於一些非重點的問題舍棄掉,減少工作量的同時集中力量解決重點問題

3、安排工作任務
將相互關系緊密的問題作為一個獨立項目-確定項目負責人和工作推進計劃表;特別是重要節點-負責人不時檢查工作,按計劃推進工作
4、推進執行任務
既然是商業分析,那麼我們就要知道從哪幾個維度去分析,以及如何獲取有用的信息。明確這兩個問題,我們就能很好的推進執行任務
3個分析維度
市場分析-競爭者分析-用戶分析
以小米案例說明:
首先我們要了解整個手機市場的概況,對於手機市場的規模多大,供應鏈上下游的情況一一了解清楚,根據手機市場的環境來預測未來手機市場的發展趨勢,做到快人一步
對於競爭者分析,我們要知道整個手機市場的幾個大的玩家,以及他們的市場佔有率是多少,還要具體分析每個競爭對手的概況和優劣勢,包括渠道、供應鏈、產品等等方面。對於手機行業來說,蘋果、華為、OPPO、vivo這幾個大玩家是一定要仔細研究
最後是用戶分析,要從用戶屬性、購買產品的決策等等因素上精準定位粉絲,了解用戶需求,抓住用戶痛點,幫助公司獲取和留存用戶。手機行業,OPPO和vivo因為渠道優勢,對於目標人群的需求抓得非常精準
3種獲取信息的方式
案頭研究-用戶調研-實地考察
案頭研究,互聯網時代,我們可以從網路獲得相關新聞和一些專業的資料庫,但是由於信息量極大,我們也要注意篩選出可靠准確的目標信息
用戶調查可以分為線上調查和線下調查,線上我們可以通過網路/電話的形式調研,能得到大量的一手信息,但是不一定能得到你想要的全部信息。線下我們可以通過拜訪的形式交流調研,線下調查能直接觸達用戶,了解到你想要的全部信息,但是時間經濟成本太高
實地調研一般會和用戶調查相結合,能得到一些隱藏但是非常重要的信息,當然,時間經濟成本也是非常高
5、輸出分析報告
這一步是整個商業分析過程的復盤總結,決定著你的分析結果是否能給企業做出正確的決策
一般來說,輸出分析報告可以分為4個步驟
總體概要-整個商業分析的主要內容,包公整體的框架和邏輯
填充整理PPT信息-將信息填充到每個獨立的項目,清楚解決問題的細節
溝通優化-內部溝通保證報告的完整性,用戶溝通包含用戶想要的信息
定稿匯報-對報告內容做到瞭然於胸,根據不同受眾,報告稱顯得內容和形式不同。
❻ 如何做好電子商務數據分析
數據是這些:訪客、頁面數、停留時間、商品被訪問數、轉化率、客單價、成交額』訪問來源等等,分析方法:天、周、月、年的同比和環比數據,擴展分析行業的數據和競爭對手的數據
❼ 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
❽ 數據分析的方法有哪些
數據分析的方法有:對比分析法,分組分析法,預測分析法,漏斗分析法,AB測試分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假設性分析法。
1.對比分析法:對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

數據分析方法是數據統計學當中應用非常廣泛的方法,具體方法有很多種,具體採用的時候因人而異。
❾ 常用的數據分析方法有哪些
1. 描述型分析:發生了什麼?
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析:為什麼會發生?
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析:可能發生什麼?
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析:需要做什麼?
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
❿ 有哪些商業智能數據分析方法
你好,商業智能中的數據分析工作主要通過OLAP來實現。原理是根據業務需求,建立人員分析數據的維度比如年月日等等。
而分析人員需要掌握的是數據分析的思路,比如我們要利用比較常用的FineBI做一個簡單的分析,先確立哪些分析指標,需要哪些表,然後取出, OLAP會自動建立表間關聯,只需要搭建圖表結構即可實現數據查詢和分析結構的展示,這也正是商業智能的「智能」所在。