❶ 排列組合中A和C怎麼算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(1)組合c計算方法7選6擴展閱讀:
排列組合的基本計數原理:
1、加法原理和分類計數法
加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法。
那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
合理分步的要求:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
與後來的離散型隨機變數也有密切相關。
❷ 排列組合中的C和A怎麼算
排列組合中的C和A計算方法如下:
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列組合注意:
對於某幾個要求相鄰的排列組合問題,可將相鄰的元素看做一個「元」與其他元素排列,然後對「元」的內部進行排列。注意事項: 對於某幾個元素不相鄰的排列問題,可先講其他元素排好,再將不相鄰的元素在已排列好的元素之間空隙中及兩端插入即可。
❸ 排列組合C幾幾怎麼算的
排列組合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!與C(n,m)=C(n,n-m)。(n為下標,m為上標)。例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列組合c計算方法:C是從幾個中選取出來,不排列,只組合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
定義及公式
排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個不同的元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。
❹ 組合c的計算公式是什麼
排列組合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!與C(n,m)=C(n,n-m)。(n為下標,m為上標)。例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列組合c計算方法:C是從幾個中選取出來,不排列,只組合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
注意事項:
1、不同的元素分給不同的組,如果有出現人數相同的這樣的組,並且該組沒有名稱,則需要除序,有幾個相同的就除以幾的階乘,如果分的組有名稱,則不需要除序。
2、隔板法就是在n個元間的n-1個空中插入若干個隔板,可以把n個元素分成(n+1)組的方法,應用隔板法必須滿足這n個元素必須互不相異,所分成的每一組至少分得一個元素,分成的組彼此相異。
3、對於帶有特殊元素的排列組合問題,一般應先考慮特殊元素,再考慮其他元素。
❺ 如何計算概率組合C
概率組合C(m,n)的計算公式為:
(5)組合c計算方法7選6擴展閱讀:
從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數。
❻ 7個數字選6個組合不重復的情況下一共多少組
即7選6的組合。
C(6,7)=(7×6×5×4×3×2)/(6×5×4×3×2×1)=7
如果注意到7選6的組合等於7選1,C(1,7)=7,可直接得出答案。
❼ 從七個人中選6人去洗碗有幾種選法
總共有七種。
和從七個人中選一個人不去洗碗意思相同,有7種選法。
排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。
排列就是指從給定個數的元素中取出指定個數的元素進行排序。組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。
排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。
❽ 有七個數字,每組選六個出來,共能選多少組
共7組。即7選6的組合。
算式:C(6,7)=(7×6×5×4×3×2)/(6×5×4×3×2×1)=7。
組合,數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重復地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為
n元集合A中不重復地抽取m個元素作成的一個組合實質上是A的一個m元子集合。
(8)組合c計算方法7選6擴展閱讀
排列組合常用方法
捆綁法
在數學運算排列組合題型的題干中經常出現「在一起」、「相鄰」特徵的題型,這時候我們考慮捆綁法(有些老師也叫打包法),即把「在一起」的元素「捆綁」處理,具體步驟為:先「捆綁」內排序,再「捆綁體」和其他元素間排序。
插空法
排列組合題中經常出現排序時要求幾個元素「不在一起」、「不相鄰」這個時候可以考慮使用插空法。