導航:首頁 > 計算方法 > 數列計算方法口訣

數列計算方法口訣

發布時間:2022-03-02 09:08:39

A. 數列收斂發散判斷口訣是什麼

收斂與發散判斷方法簡單來說就是有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。

數列(sequence of number),是以正整數集(或它的有限子集)為定義域的函數,是一列有序的數。數列中的每一個數都叫做這個數列的項。

排在第一位的數稱為這個數列的第1項(通常也叫做首項),排在第二位的數稱為這個數列的第2項,以此類推,排在第n位的數稱為這個數列的第n項,通常用an表示。

著名的數列有斐波那契數列,三角函數,卡特蘭數,楊輝三角等。一般地,如果一個數列從第2項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列(arithmetic sequence)。

這個常數叫做等差數列的公差(common difference),公差通常用字母d表示,前n項和用Sn表示。等差數列可以縮寫為A.P.(Arithmetic Progression) 。

B. 數列求和公式中的錯位相減法兩個式子相減的時候有什麼口訣

口訣倒是不知道,但是一般的規律知道一些。你就看兩個式子中的冪次相同的相減。相減後做差的結果,要麼消去了為0,要麼是一個簡單的等比數列,可以很容易計算出該簡單數列的和。

例如上面的這個例子,分母中冪次相同的做差後,出了個別項,剩餘的為一以1/2為公比的等比數列,容易求和,最終可得到Tn。

C. 數列求和公式中的錯位相減法有什麼特點的方法或者口訣啊!

(2)中倒數第二項是分母是2的n次方,筆誤。

D. 行測數字推理秒殺口訣是什麼

如下:

一、數字推理的秒殺技巧具有不確定性,因此使用數字推理秒殺技巧的時候,一定要在沒有思路,沒有時間的情況下才能使用。

二、數字推理秒殺技巧。

奇偶性。數字推理的奇偶性秒殺技巧是根據數列當中奇數和偶數的排序來猜測答案的一種方法,主要有三種形式:(1)全奇型;(2)全偶型;(3)奇偶交錯型。

題目難點分析

大家每個人對於數字的敏感度是不一樣的,還有就是大家對於考試當中常考的一些考點和規律是陌生的。

這樣就導致了很多的同學看到這部分的題目之後束手無策。但是這部分題目真的是無計可施了嗎?也不是這樣的,只要我們做好了足夠的積累,我們還是可以保證在考試當中做出大部分數字推理的題目。

E. 誰有所有高中數學公式口訣急!

特別說明由於各方面情況的不斷調整與變化,新課程教育在線提供的考試信息僅供參考,敬請考生以權威部門公布的正式信息為准。

F. 高中數學的公式口訣

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。 三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用
1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集 解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。 等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。 虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。 加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。 點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。 有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

G. 誰有所有高中數學公式口訣

一、《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任庖緩扔諍竺媼礁S盞脊驕褪嗆茫夯蟠蠡。?nbsp;
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加餘弦想餘弦,1減餘弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

H. 有沒有冪數列口訣直到的朋友麻煩列出口訣,謝謝!

有關數列的口訣:

《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。網路地圖

本數據來源於網路地圖,最終結果以網路地圖最新數據為准。

I. 分數裂項公式口訣是什麼

只要是分式數列求和可採用裂項法,裂項的方法是用分母中較小因式的倒數減去較大因式的倒數,通分後與原通項公式相比較就可以得到所需要的常數。

裂項法,這是分解與組合思想在數列求和中的具體應用。是將數列中的每項(通項)分解,然後重新組合,使之能消去一些項,最終達到求和的目的。 通項分解(裂項)倍數的關系。通常用於代數,分數,有時候也用於整數。

此類變形的特點是將原數列每一項拆為兩項之後,其中中間的大部分項都互相抵消了。只剩下有限的幾項。

注意: 餘下的項具有如下的特點

1餘下的項前後的位置前後是對稱的。

2餘下的項前後的正負性是相反的。

易錯點:注意檢查裂項後式子和原式是否相等,典型錯誤如:1/(3×5)=1/3-1/5(等式右邊應當除以2)。

附:數列求和的常用方法

公式法、裂項相消法、錯位相減法、倒序相加法等。(關鍵是找數列的通項結構)。

1、分組法求數列的和:如an=2n+3n。

2、錯位相減法求和:如an=n·2^n。

3、裂項法求和:如an=1/n(n+1)。

4、倒序相加法求和:如an= n。

5、求數列的最大、最小項的方法:

① an+1-an=…… 如an= -2n2+29n-3。

② (an>0) 如an=6。

③ an=f(n) 研究函數f(n)的增減性 如an= an^2+bn+c(a≠0)。

6、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:

(1)當 a1>0,d<0時,滿足{an}的項數m使得Sm取最大值。

(2)當 a1<0,d>0時,滿足{an}的項數m使得Sm取最小值。

7、對於1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同樣適用。

閱讀全文

與數列計算方法口訣相關的資料

熱點內容
矛盾與解決方法作文 瀏覽:379
排列三計算方法視頻 瀏覽:332
正宗的干條燕窩食用方法 瀏覽:889
米蕎的食用方法是什麼 瀏覽:647
論工作分析的基本方法 瀏覽:90
前列腺癌治療新方法上海 瀏覽:755
怎麼股癬治療方法 瀏覽:97
化學消毒劑的方法有哪些 瀏覽:620
越南蒸雞肉的正確方法 瀏覽:488
自動水管安裝方法圖解 瀏覽:74
仁和雪蓮精華使用方法 瀏覽:76
降血糖的方法圖片 瀏覽:569
色漿的製作方法和步驟 瀏覽:245
治療失眠的好方法周教授 瀏覽:752
三星手機恢復出廠設置的方法 瀏覽:829
如何改善唇深的方法 瀏覽:203
地球計算方法最新2012 瀏覽:491
兒童游泳的正確方法圖解 瀏覽:637
如何用卡紙做燈籠手工製作方法 瀏覽:346
滅蟻靈分析方法 瀏覽:953