導航:首頁 > 計算方法 > 溝三股四玄五計算方法

溝三股四玄五計算方法

發布時間:2022-02-08 11:11:26

⑴ 勾三股四弦五,是什麼

「勾三股四弦五」是勾股定理的一個特別的例子,由西周初年的商高提出。但只是適應於直角三角形(3角度數為36.8698976 °,53.1301024°,90°)。

中國古代稱短的直角邊為勾,長的直角邊為股,斜邊為弦。據我國西漢時期算書《周髀算經》記載,約公元前1100年,人們已經知道如果勾是三,股是四,那麼弦就是五。

勾三股四弦五直角三角形的內切圓直徑為2。故有「勾三股四弦五徑二」之說。

外國的勾股定理

遠在公元前約三千年的古巴比倫人就知道和應用勾股定理,他們還知道許多勾股數組。美國哥倫比亞大學圖書館內收藏著一塊編號為「普林頓322」的古巴比倫泥板,上面就記載了很多勾股數。古埃及人在建築宏偉的金字塔和測量尼羅河泛濫後的土地時,也應用過勾股定理。

公元前六世紀,希臘數學家畢達哥拉斯證明了勾股定理,因而西方人都習慣地稱這個定理為畢達哥拉斯定理。

公元前4世紀,希臘數學家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個證明。

1876年4月1日,加菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的一個證法。

1940年《畢達哥拉斯命題》出版,收集了367種不同的證法。

⑵ 勾三股四弦五怎樣計算

勾三股四弦五是一種判定直角三角形的方法,
其實就是一種直角的判定方法,
原理是勾股定理的逆定理,
在確定直角三角形後,
可以利用勾股定理來進行計算。

⑶ 勾三股四玄五怎麼

就是直角三角形的兩條直角邊的邊長平方的和,等於斜邊的平方。這在中國叫做勾股定理,在西方叫畢達哥拉斯定理。勾三股四弦是五,這是勾股定理的一個特例。
算式為:3的平方+4的平方=5的平方

如何用勾三股四弦五來計算角度計算方式

計算公式(A/B/C為三個角):
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc

(註:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)

擴展內容:

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

⑸ 勾三股四弦五是怎樣計出各邊長度的

在直角三角形中兩直角邊的平方和等於斜邊的平方。

勾股定理:勾²+股²=弦²。

3²+4²=5²。

即:3×3+4×4=5×5。

知道其中二個數字,可以計算出另一個數字。

1、這是勾股定理的一個特例。

2、勾方+股方=弦方。

3、a、b為直角三角形的兩個直角邊c為斜邊,那麼就有:a²+b²=c²。

4、數字3、4、5恰好符合這個規律。

⑹ 鉤三股四旋五基本公式

a*a+b*b=c*c

勾三股四弦五,是勾股定理的解釋。

三角形的兩直角邊一邊為三,一邊為四,那麼斜邊為五

如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼a*a+b*b=c*c

提醒:更好的寫法應為:勾三股四弦五

(6)溝三股四玄五計算方法擴展閱讀:

勾股定理的推導:

在歐幾里得的《幾何原本》一書中給出勾股定理的以下證明。設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊。延長此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。

在這個定理的證明中,我們需要如下四個輔助定理:

如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS)

三角形面積是任一同底同高之平行四邊形面積的一半。

任意一個正方形的面積等於其二邊長的乘積。

任意一個矩形的面積等於其二邊長的乘積(據輔助定理3)。

證明的思路為:從A點劃一直線至對邊,使其垂直於對邊。延長此線把對邊上的正方形一分為二,把上方的兩個正方形,通過等高同底的三角形,以其面積關系,轉換成下方兩個同等面積的長方形。

設△ABC為一直角三角形,其直角為∠CAB。

其邊為BC、AB和CA,依序繪成四方形CBDE、BAGF和ACIH。

畫出過點A之BD、CE的平行線,分別垂直BC和DE於K、L。

分別連接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共線,同理可證B、A和H共線。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因為AB=FB,BD=BC,所以△ABD≌△FBC。

因為A與K和L在同一直線上,所以四邊形BDLK=2△ABD。

因為C、A和G在同一直線上,所以正方形BAGF=2△FBC。

因此四邊形BDLK=BAGF=AB²。

同理可證,四邊形CKLE=ACIH=AC²。

把這兩個結果相加,AB²+AC²=BD×BK+KL×KC

由於BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由於CBDE是個正方形,因此AB²+AC²=BC²,即a²+b²=c²。

此證明是於歐幾里得《幾何原本》一書第1.47節所提出的。

由於這個定理的證明依賴於平行公理,而且從這個定理可以推出平行公理,很多人質疑平行公理是這個定理的必要條件,一直到十九世紀嘗試否定第五公理的非歐幾何出現。

⑺ 勾3股4弦5怎麼算

1、這是勾股定理的一個特例
2、勾方+股方=弦方
3、a、b為直角三角形的兩個直角邊,c為斜邊,那麼就有:a²+b²=c²
4、數字3、4、5恰好符合這個規律

⑻ 直角三角形,勾3股4弦5數怎樣計算得來的

1、"勾三股四弦五"是勾股定理的一個特別的例子,由西周初年的商高提出。但只是適應於直角三角形,(3角度數為36.8698976 °,53.1301024°,90°。)

2、勾三股四弦五不是用來計算角度的,它只是一種特殊的直角三角形的邊之間的關系。

3、餘弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對餘弦定理加以變形並適當移於其它知識,則使用起來更為方便、靈活。

4、設這個三角形為△ABC,∠C=90°.AB=5,BC=4,AC=3
∠A的正弦sinA=BC/AB=4/5=0.8.查數學用表中的正弦表或利用計算器,可得∠A≈53°,於是∠B=90°-53°=37°.

⑼ 勾三股四玄五怎麼計算

您好!
中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」
商高回答說:「數的產生來源於對方和圓這些形體餓認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方。我們用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:勾2+股2=弦2亦即:a2+b2=c2
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那麼周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。
在稍後一點的《九章算術一書》中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;「把勾和股分別自乘,然後把它們的積加起來,再進行開方,便可以得到弦。」把這段話列成算式,即為:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)
中國古代的數學家們不僅很早就發現並應用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽。趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。在這幅「勾股圓方圖」中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。於是便可得如下的式子:4×(ab/2)+(b-a)2=c2化簡後便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)
趙爽的這個證明可謂別具匠心,極富創新意識。他用幾何圖形的截、割、拼、補來證明代數式之間的恆等關系,既具嚴密性,又具直觀性,為中國古代以形證數、形數統一、代數和幾何緊密結合、互不可分的獨特風格樹立了一個典範。以後的數學家大多繼承了這一風格並且代有發展。例如稍後一點的劉徽在證明勾股定理時也是用的以形證數的方法,只是具體圖形的分合移補略有不同而已。
中國古代數學家們對於勾股定理的發現和證明,在世界數學史上具有獨特的貢獻和地位。尤其是其中體現出來的「形數統一」的思想方法,更具有科學創新的重大意義。事實上,「形數統一」的思想方法正是數學發展的一個極其重要的條件。正如當代中國數學家吳文俊所說:「在中國的傳統數學中,數量關系與空間形式往往是形影不離地並肩發展著的......十七世紀笛卡兒解析幾何的發明,正是中國這種傳統思想與方法在幾百年停頓後的重現與繼續。」
謝謝!

⑽ 直角三角形,勾3股4弦5數怎樣計算得來的

「勾三股四弦五」是勾股定理的一個特別的例子,由西周初年的商高提出 。但只是適應於直角三角形,(3角度數為36.8698976 °,53.1301024°,90°。)

中國古代稱短的直角邊為勾,長的直角邊為股,斜邊為弦。據我國西漢時期算書《周髀算經》記載,約公元前1100年,人們已經知道如果勾是三,股是四,那麼弦就是五。

(10)溝三股四玄五計算方法擴展閱讀:

勾股定理的歷史發展:

公元前十一世紀,周朝數學家商高就提出「勾三、股四、弦五」。《周髀算經》中記錄著商高同周公的一段對話。

商高說:「…故折矩,勾廣三,股修四,經隅五。」意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」,根據該典故稱勾股定理為商高定理。

公元三世紀,三國時代的趙爽對《周髀算經》內的勾股定理做出了詳細注釋,記錄於《九章算術》中「勾股各自乘,並而開方除之,即弦」,趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中亦證明了勾股定理。

在中國清朝末年,數學家華蘅芳提出了二十多種對於勾股定理證法。

閱讀全文

與溝三股四玄五計算方法相關的資料

熱點內容
水質超標的解決方法 瀏覽:575
英語大師教學方法 瀏覽:154
男性眼袋怎麼消除簡單方法 瀏覽:907
鈦金條有幾種安裝方法好看 瀏覽:829
披薩餅的製作方法和視頻 瀏覽:387
青田玉鑒別方法 瀏覽:913
魅族3夜間模式在哪裡設置方法 瀏覽:374
如何清理水垢的好方法 瀏覽:691
塗油漆的檢測方法 瀏覽:910
汽車前蓋間隙檢測方法 瀏覽:787
中考邢台填報志願的方法與步驟 瀏覽:503
翻腕上籃訓練方法 瀏覽:200
自己怎麼測肺活量怎麼測試方法 瀏覽:792
勃起功能障礙治療方法 瀏覽:678
現有檢測甲醛的方法 瀏覽:804
食療手抖最佳治療方法 瀏覽:548
經濟學中規避風險的方法有哪些 瀏覽:275
房顫的中醫治療方法 瀏覽:763
6缸活塞安裝方法 瀏覽:354
常用應用題解題方法介紹 瀏覽:779