导航:首页 > 使用方法 > 常用的细化晶体晶粒的方法

常用的细化晶体晶粒的方法

发布时间:2022-10-06 10:29:30

A. 晶粒的大小对金属的力学性能有何影响细化晶粒的常用方法有哪几种

金属结晶后是由许多晶粒组成的多晶体,晶粒大小可以用单位体积内晶粒数目来表示。数目越多,晶粒越小。为了测量方便常以单位截面上晶粒数目或晶粒的平均直径来表示。金属的晶粒大小对金属的许多性能有很大影响。晶粒度的影响,实质是晶界面积大小的影响。晶粒越细小则晶界面积越大,对性能的影响也越大。
对于金属的常温力学性能来说,一般是晶粒越细小,则强度和硬度越高,同时塑性和韧性也越好。这是因为,晶粒越细,塑性变形也越可分散在更多的晶粒内进行,使塑性变形越均匀,内应力集中越小;而且晶粒越细,晶界面越多,晶界越曲折;晶粒与晶粒中间犬牙交错的机会就越多,越不利于裂纹的传播和发展,彼此就越紧固,强度和韧性就越好。表列出晶粒大小对纯铁的力学性能影响。由表可见细化晶粒对于提高金属的常温力学性能作用很大,因此,通常总是希望钢铁材料的晶粒越细越好。
但是在高温工作的金属材料,晶粒过大或过小都不好。因此通常希望得到适中的晶粒度,在有些情况下反而希望晶粒越粗越大越好。例如,制造电动机和变压器的硅钢片就是这样,晶粒越粗大,其磁带损耗越小,效率越高。总之,晶粒度对金属性能的影响是多方面的,要具体情况具体分析

走我们老师课件上面找的一段
希望对你有帮助

B. 生产中,为什么要细化晶粒常用的细化晶粒的方法有哪些

为何要细化晶粒:
因为一般地说,在室温下,细晶粒金属具有较高的强度和韧性。
细化晶粒的方法有哪些:
1、增加过冷度
2、变质处理
3、振动处理
生产(proce),指人类从事创造社会财富的活动和过程,包括物质财富、精神财富的创造和人自身的生育,亦称社会生产。狭义生产仅指创造物质财富的活动和过程。也指动物的繁衍后代。

C. 细化金属材料晶粒的方法有哪些

一、液态结晶过程中的细化
1、增加过冷度,加大冷却速度。
2、添加形核剂、孕育剂、变质剂
3、振动处理
4、电磁搅拌、超声波搅拌
二,固态下的晶粒细化
1、热处理细化:包括正火、感应加热淬火等方式
2、塑性变形+再结晶细化

D. 最常用的细化晶粒的方法是提高冷却过程的什么和什么

(1)在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核.晶核数量愈多,则晶粒愈细.
(2)在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理.这种方法在工业生产中得到了广泛的应用.如铸铁中加入硅、钙等.
(3)在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化.

细化晶粒让质地变得更加纯净和坚韧。方法有:添加微量元素,增加凝固时长,锻造专等。

添加微量元属素或孕育剂,使铸态下得到细小的晶粒。增加凝固过程的冷去速度,可在铸态下获得细小晶粒。通过锻造,打破铸态晶粒,获得细小的晶粒。细化的晶粒与粗大的晶粒相比,钢材具有更好的力学性能。

在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核。晶核数量愈多,则晶粒愈细。在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理。

这种方法在工业生产中得到了广泛的应用.如铸铁中加入硅、钙等。在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化。

E. 生产中细化晶粒的常用方法有哪几种为什么要细化晶粒

细化晶粒让质地变得更加纯净和坚韧。方法有:添加微量元素,增加凝固时长,锻造等。
添加微量元素或孕育剂,使铸态下得到细小的晶粒。增加凝固过程的冷去速度,可在铸态下获得细小晶粒。
通过锻造,打破铸态晶粒,获得细小的晶粒。细化的晶粒与粗大的晶粒相比,钢材具有更好的力学性能。
在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核。
晶核数量愈多,则晶粒愈细。在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理。
这种方法在工业生产中得到了广泛的应用.如铸铁中加入硅、钙等。在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化。

F. 细化晶粒的途径有哪些

细化晶粒的方法有:降低熔液的浇注温度、变质处理、震动搅拌等方法。
1、增大过冷度可以提高形核率与生长速率的比值,从而使晶粒数增大,晶粒细化。增大过冷度,实际上是提高金属凝固时的冷却速度,这可以通过采用吸热能力强、导热性能好的铸型(如金属型),以及降低熔液的浇注温度等措施来实现。这种方法对于小型铸件或薄壁铸件效果较好,但对于大型铸件就不合适了。
2、变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),作为非均匀形核的基底,从而使晶核数大量增加,晶粒显着细化。变质处理是工业生产中广泛使用的方法。
3、震动、搅拌在浇注和结晶过程中进行机械振动或搅拌,也可以显着细化晶粒。这是因为振动和搅拌能够向金属液体中输入额外能量、增大能量起伏,从而更加有效地提供形核所需要的形核功。
另一方面,振动和搅拌可以使枝晶碎断,增大晶核数量方法有机械法、电磁法、超声波法等。

G. 根据凝固理论,细化晶粒的基本途径有哪些

1、改变结晶过程中的凝固条件,尽量增加冷却速度,另一方面调节合金成分以提高液体金属过冷能力,使形核率增加,进而获得细化的初生晶粒。

2、进行塑性变形时严格控制随后的回复和再结晶过程以获得细小的晶粒组织。

3、利用固溶体的过饱和分解或粉末烧结等方法,在合金中产生弥散分布的第二相以控制基体组织的晶粒长大。

4、通过同素异形转变的多次反复快速加热冷却的热循环处理来细化晶粒。

5、机械振动、超声波振动和电磁振动。

细化晶粒与冷度的关系:

都与过冷度有关,过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。

铝及铝合金铸锭生产中增加过冷度的方法主要有降低铸造速度、提高液态金属的冷却速度、降低浇注温度等。但是,如果没有较多的游离晶粒的存在,增加激冷作用反而不利于细晶粒区的形成和扩大。

H. 如何细化晶粒

细化晶粒的基本做法是:在晶粒的形成过程中增加形核率与减小晶粒的长大速度来现实,如晶粒已成形,设法打碎原来的粗大晶粒。因而可考虑以下方法:
1.适当加大过冷度(可适当增加冷却速度来现实,但不能过快);
2.加入形核剂,如加入钛、铌、铬等等以增加形核率;
3.振动处理:可采用机械振动,超声波振动来细化晶粒(类似于把原来已形成的粗大枝晶打碎);
4.通过热处理:以钢为例,将钢进行加热奥氏体化(具体的加热温度由材料的化学成份而定),奥氏化化刚完成时得到细小晶粒(注意不能保温过长时间,以防其又变成粗大晶粒,保温时间可从工件材料、加热炉效率、工件截面等方面进行估算),之后以适当的速度冷却。即可通过退火、正火等方式进行。
由于不知你是在哪种情况之下考虑细化晶粒,可能针对性不强。

I. 细化晶粒的方法有哪些

1、冶金处理细化晶粒

铸造过程中传统的晶粒细化方法主要是通过添加形核剂进行变质处理来实现,通过提供大量的弥散质点促进非均匀形核,使钢液凝固后获得更多的细小晶粒。

此外,合金化也可以有效地细化钢铁的晶粒:一方面是某些元素,例如Mn、Cr等,可以降低相变温度,细化晶粒并细化相变过程中或相变后析出的微合金碳氮化合物;另一方面是某些强碳氮化合元素与钢中的碳或氮形成微纳米级的化合物,对晶粒的长大起到强烈的阻碍作用,同时也促进形成大量的非均匀晶核以细化晶粒。

2、形变热处理细化晶粒

形变热处理是一种将固态相变或再结晶与机械变形有机结合在一起进行材料热处理的手段,对材料组织细化极为有效。利用形变热处理,可以同时达到成型和改善显微组织的双重目的,使工件获得优异的强度和韧性。

3、磁场或电场细化晶粒

强磁场或电场是影响金属相变的重要因素:由于不同相具有不同的磁导率或电介质常数,电磁场将影响其吉布斯(Gibbs)自由能进而影响到y-a相变温度。在热轧过程中采用间断施加磁场或者电场的方法可以改变AC3温度,反复进行奥氏体-铁素体相变,促进铁素体晶粒细化。外加磁场或电场将增大淬火冷却时从奥氏体向马氏体转变的相变驱动力,可获得与增大过冷度相同的效果,从而增加马氏体的形核率,降低其生长速度,达到组织细化的目的。

4、球磨细化晶粒

球磨法是指将大块物料放入高能球磨机中,利用介质和物料之间相互研磨和冲击使物料细化,其产物一般为粉料,形状不规则,表面也可能与介质发生化学反应而受污染,粒子因受到多次变形、硬化和断裂,会有大量缺陷存在,因而表面缺陷多且活性极高。

5、非晶晶化细化晶粒

非晶晶化法通常由非晶态固体的获得和晶化2个过程组成:非晶态固体可通过熔体激冷、高速直流溅射等技术制备,晶化通常采用等温退火方法实现,近年来还发展了分级退火、脉冲退火等方法。

6.强塑性变形细化晶粒

强塑性变形细化晶粒法目前有等通道挤压法,高压扭转法,累积叠轧焊法,多向压缩法。但每种方法都有一定的局限,且可加工的尺寸都有限。

(9)常用的细化晶体晶粒的方法扩展阅读:

晶粒度检测的方法

(1)渗碳法。将试样在930℃±10℃保温6h,使试样表面获得1mm以上的渗碳层。渗碳后将试样炉冷到下临界温度以下,在渗碳层中的过共析区的奥氏体晶界上析出渗碳体网,经磨制和浸蚀后便显示出奥氏体晶粒边界。这种方法适于渗碳钢。

(2)氧化法。将试样检验面抛光,然后将抛光面朝上放入加热炉中,在860℃±10℃加热1h,然后淬入水中或盐水中,经磨制和浸蚀后便显示出由氧化物沿晶界分布的原奥氏体晶粒形貌。这种方法适用于碳含量为0.35%~0.60%的碳钢和合金钢。

(3)网状铁素体法。将碳含量不大于0.35%的试样在900℃±10℃、碳含量大于0.35%的试样在860℃±10℃加热30min,然后空冷或水冷,经磨制和浸蚀后沿原奥氏体晶界便显示出铁素体网。这种方法适用于碳含量为0.25%~0.60%的碳钢和碳含量为0.25%~0.50%的合金钢。

(4)直接淬火法。将碳含量不大于0.35%的试样在900℃±10℃、碳含量大于0.35%的试样在860℃±10℃加热60min,然后淬火,得到马氏体组织,经磨制和浸蚀后显示奥氏体晶界。为了清晰显示晶界,在腐蚀前可在550℃±10℃回火1h。这种方法适用于直接淬火硬化钢。

(5)网状渗碳体法。将试样在820℃±10℃加热,保温30min以上,炉冷到下临界点温度以下,使奥氏体晶界上析出渗碳体网。经磨制和浸蚀后显示奥氏体晶粒形貌。这种方法适用于过共析钢。

(6)网状珠光体法。采用适当尺寸的棒状试样,加热到规定的淬火温度,保温后将试样的一端在水中淬火,经磨制和浸蚀后可以看到细珠光体网显示出的奥氏体晶粒形貌。这种方法适用于其他方法不能显示的过共析钢。

J. 实际生产中常用什么 有效方法获得细晶粒

实际生产细晶可采用:

1、增大过冷度;

2、加变质剂,提高N;

3、物理方法,如超声波振动、机械振动使枝晶破碎等。

晶粒细小,则金属强度,硬度高,塑性,韧性好,耐磨性强。反之,晶粒粗大,金属塑性,韧性较差,不耐磨,综合性能差;晶粒大小主要取决于形核率N和晶核的长大速率G,一般提高N/G的比率,可细化晶粒,如增大过冷度。

(10)常用的细化晶体晶粒的方法扩展阅读:

晶粒度标准等级分为8级,1级最大,8级最小。奥氏体晶粒在100倍显微镜下,其大小与标准的晶粒度进行对比,凡度晶粒为1~5级的定为本质粗晶粒钢,5~8级的定为本质细晶粒钢。此外,还有超细晶粒钢。

钢的奥氏体晶粒大小是在一定加热条件下形成的,称为奥氏体实际晶粒度,它的大小对冷却转变后钢的性能有明显的影响,奥氏体晶粒越细小,则淬火后的晶粒也越细,力学性能也越好,特别是对冲击韧度有明显的提高。因此,钢在淬火加热时,为得到细小而均匀的奥氏体晶粒,首先要选用本质细晶粒钢;其次,加热温度必须控制,不能过高。

阅读全文

与常用的细化晶体晶粒的方法相关的资料

热点内容
艾灸的治疗方法胃胀灸哪里 浏览:588
5公分肺癌最佳治疗方法 浏览:826
郭德纲男团锻炼方法 浏览:300
输卵管有积水的治疗方法有哪些 浏览:989
如何正确挂挡的操作方法 浏览:720
试验验证的常用方法 浏览:516
民法上的民事纠纷的解决方法 浏览:779
硕士论文研究方法作品分析法 浏览:745
魅族手机发长文不折叠的方法 浏览:82
钢件表面渗氮层硬度测量方法 浏览:476
联想台式新电脑卡顿严重解决方法 浏览:957
痱子有什么解决方法 浏览:962
肛瘘民间治疗方法 浏览:575
国家队羽毛球训练方法 浏览:959
养蜂活框安装方法 浏览:790
槐参种植繁殖方法 浏览:669
小苏打治鼻炎最简单方法 浏览:993
六月带孩子的正确方法 浏览:205
蛇带疮怎么治疗方法 浏览:135
管道修补器的使用方法 浏览:528