导航:首页 > 方法技巧 > 数列方法和技巧

数列方法和技巧

发布时间:2022-01-31 14:59:19

1. 数学数列的解题技巧是什么

这个一个回答解决不了问题的,给你几种方法吧 裂项相消就是根据数列通项公式的特点,把通项公式写成前后能够消去的形式,裂项后消去中间的部分,达到求和目的一种数列求和方法。先根据通项公式找裂项公式,然后逐项写开,消去, 错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1)=n^2; 当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1); ∴xSn=x+3x+5x+7x^4+…+(2n-1)*x^n; 两式相减得(1-x)Sn=1+2x[1+x+x+x+…+x^(n-2)]-(2n-1)*x^n; 化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式): S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1) 在(1)的左右两边同时乘上a。 得到等式(2)如下: aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2) 用(1)—(2),得到等式(3)如下: (1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3) (1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式。 (1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S的通用公式了。 例子:求和Sn=3x+5x+7x+……..+(2n-1)·x的n-1次方(x不等于0) 解:当x=1时,Sn=1+3+5+…..+(2n-1)=n; 当x不等于1时,Sn=3x+5x+7x;+……..+(2n-1)·x的n-1次方 所以xSn=x+3x+5x+7x四次方……..+(2n-1)·x的n次方 所以两式相减的(1-x)Sn=1+2x(1+x+x;+x;+。。。。。+x的n-2次方)-(2n-1)·x的n次方。 化简得:Sn=(2n-1)·x的n+1次方 -(2n+1)·x的n次方+(1+x)/(1-x)平方 Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn= 3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得 -Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法 这个在求等比数列求和公式时就用了 Sn= 1/2+1/4+1/8+....+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些) 两式相减 1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n 数列分组求和 公式 ①x^n-y^n=(x-y)[x^(n-1)+x^(n-2)*y+x^(n-3)*y^2+…+x*y^(n-2)+y^(n-1)](n为正整数) 变形得此步所用的x^(n-1)+x^(n-2)*y+x^(n-3)*y^2+…+x*y^(n-2)+y^(n-1)=(x^n-y^n)/(x-y) ②等比数列求和公式:(q^n-1)a1/(q-1) 其中q为公比,n为项数,a1为首项

求采纳

2. 学习数列问题的技巧和方法有什么

在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

3. 数列解题有何技巧

1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使原来的规律明显化或转化为简单规律,如等差等比这些有法可依的规律,最后通过学过知识解答.
2,对于那些等差等比数列,不要先考虑捷径,最实际的方法是通过现有的最基本的公式写出数列内部关系,一步步化简,一步步代入题目给出的条件,往往答案会自然而然的出来.
3,作为经历过高考的过来人,我觉得,数列往往会和那些指数对数的东东有点联系,题目往往有这样的倾向,所以对代数公式的熟记对解数列题还是小有帮助的.
4,差不多就这么点了,当然,最重要的一点,多做题,高考这种东西

4. 数列求和的几种方法和技巧

(1)等差数列等比数列直接用公式
(2)转化为等差数列和等比数列求和
(3)裂项求和
(4)错位相减

5. 数列通项公式技巧

没有啥很好的方法,主要是对数字比较熟悉。
一般拿到数字以后,可以试着做差、做商,来观察
比如你的1、3、5、7……,试着逐项做差就是2,2,2.……,所以一般就推测会是等差数列

还有逐顶做商就是你的第二例,前后项相比,看看规律。

有时候,一次做差看不大出来,还需要对做差的结果,再进行二次做差,一般地,一次做差出来的等差数列通项中会有n,二次做差出来的差等数列通项中会有n^2,……

有时候,有些数列是两个数列混合而成,这样,我们可以将偶数项写一个通项公式,奇数项写一个通项公式。

主要就是多试,多观察。

6. 数列题好难,有什么方法技巧

数列的常见题型有:通项、求和、证明数列不等式、与函数、解析等内容综合等。其中难度最大的是数列不等式的证明,证明方法有:放缩法、数学归纳法、函数法(利用函数的单调性)、比较法等。最为重要的是放缩法与数学归纳法。

7. 数学高中数列10种解题技巧

答题技巧一、高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

答题技巧二、题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

答题技巧三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

答题技巧四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

答题技巧五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

答题技巧六、总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

8. 怎样学好数列

1、函数的思想方法

数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

2、方程的思想方法

数列这一章涉及了多个关于首项、末项、项数、公差、公比、第n项和前n项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。

3、不完全归纳法

不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。

4、倒序相加法

等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒序相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。

5、错位相减法

错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前n项和公式的推导就用到了这种思想方法。

9. 高中数学数列解题技巧有哪些

一、高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

二、题目不会简单容易,难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,应该积累以下的一些方法。



四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

六、每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

阅读全文

与数列方法和技巧相关的资料

热点内容
平均数的计算方法 浏览:105
什么方法给孩子断奶 浏览:797
混凝土徐变影响因素与计算方法 浏览:623
摩托车点火防盗器安装方法 浏览:994
小腿耐力训练方法 浏览:300
怎么手消肿最快最有效方法 浏览:444
用什么方法割菜花好 浏览:745
灯暖浴霸开关接线方法视频 浏览:454
肝硬化锻炼方法视频 浏览:527
委内瑞拉佣兵训练方法 浏览:945
两耳听后立身正确方法 浏览:472
下厨房蒸馒头的方法和步骤 浏览:45
多选工期的常见计算方法 浏览:631
数控刀架正确安装方法 浏览:32
苹果早熟的正确方法 浏览:901
快速逃走的方法 浏览:783
铝扣板直角安装方法 浏览:417
自来水鉴别白酒方法 浏览:489
最佳现金持有量的方法 浏览:285
书签的折叠方法视频 浏览:959