导航:首页 > 研究方法 > CP破缺研究方法

CP破缺研究方法

发布时间:2022-11-30 11:13:29

1. 费米实验室的研究成果

费米实验室精确测定物质与反物质转换速率
设在费米实验室的国际CDF(Collider Detector at Fermilab)合作组织对物质反物质之间的超快转换进行了最精确的测量。实验发现某些B介子可以自发地转变成为反B介子然后再变回B介子,转变速度为三万亿次每秒。这一结果与粒子物理标准模型相吻合,并再次证明电荷宇称破缺的存在,而CP破缺被认为是宇宙中物质比反物质多的原因。
宇宙学家们相信,在大爆炸最初产生的物质与反物质等量。但是如果物质与反物质精确对等,则在它们湮灭之后就只能剩下光子。事实并非如此,在这个宇宙中物质比反物质要多得多。物质统治下的宇宙的客观存在说明,物质与反物质在大爆炸之后经历了不同的演化过程。在粒子物理标准模型中有一个过程叫做电荷宇称破缺(CP violation),它是造成物质、反物质命运炯异的原因。CP破缺意味着,当物理定律用之于三维反转和反物质粒子时要有所变化。
CP破缺可以用不同的方法来证明。在1964年中性发现中性K介子的过程中间接地证明了CP破缺。2001年斯坦福BaBar研究组和Belle研究组各自独立地在实验中发现了B介子的这一过程。而BaBar小组更是在2004年发现B介子与反B介子衰变的差异而“直接”证明了CP破缺。
B介子是一种由正反物质共同构成的短命粒子,它由一个夸克和一个反夸克组成。CDF的物理学家们研究物质-反物质转化的对象是Bs介子,它是由一个底夸克和一个反奇异夸克组成的。2001年在费米实验室万亿电子伏质子反质子对撞机上启动了这项称为“Tevatron Run II”的实验项目。虽然正负质子对撞机比KEK和SLAC的设备产生的强子数要多得多,但是籍此观察B介子衰变依然是一项非常艰难的工作。

2. 对称性破缺的举例

下面列举几个对称性自发破缺的事例: 实验已经证明,强作用下宇称守恒。这是与微观粒子的镜象对称性相联系的守恒定律。1956年前后,在对最轻的奇异粒子衰变过程的研究中遇到了“t ~ q 疑难”。实验中发现的t 和q 粒子,它们质量相等,电荷相同,寿命也一样。但它们衰变的产物却不相同:实验结果的分析表明,3个p 介子的总角动量为零,宇称为负。而2个p 介子的总角动量如为零,则宇称只能是正。因此,从质量、寿命和电荷来看, q 和t 似乎是同一种粒子。但从衰变行为来看,如果宇称是守恒量,则q 和t 就不可能是同一种粒子。
1956年,李政道和杨振宁解决了这个难题。他们提出弱相互作用过程中宇称不守恒的设想,吴健雄的钴60原子核b 蜕变实验验证了这个设想。1957年,吴健雄在10-2 K下做原子核b 衰变实验,用核磁共振技术使核自旋按确定方向排列,观察b 衰变后的电子数分布,发现无镜像对称性 —— 证明了弱作用的宇称不守恒性。
1957年李政道和杨振宁获诺贝尔物理奖。
1900年法国学者贝纳尔 (H.Benard)发现:从下面均匀加热水平容器中薄层液体时,若上下温差超过一临界值, 液体中突现类似蜂房的六边形网格, 液体的传热方式由热传导过渡到了对流,每个六角形中心的液体向上流动,边界处液体向下流动。这是对流与抑止因素(黏性和热扩散)竞争的结果。
大多数动物在外观上都具有左右对称性,但体内的器官就不那么对称了。如果深入到分子层次,就会发现一种普遍存在于生物界的更深刻的左右不对称性。1844年德国化学家E.E.Mitscherlich发现,酒石酸钠铵和葡萄酸钠铵的结晶具有相同的晶形,一样的化学性质,但溶液的旋光性不同。前者使偏振面右旋,后者无旋光性。1847年法国Louis Pasteur发现了葡萄酸钠铵中有互为镜象对称的两种旋光异构物,其结构如图所示。对此现象解释的信念是:光活性有与生命过程相联系的起源。
现代生物化学指出:有机化合物的旋光异构现象与有机分子中碳原子四个键的空间构形有关。用L(livo)和D(dextro)分别表示左、右型旋光异构体,(+)、(-)代表该物质的溶液的旋光方向,(-)表示左旋,(+)代表右旋。碳四面体的左右两种构型、甘油醛中四个基团L、D两种构型以及丙氨酸的旋光异构体简要图示如左图,它明显地反映出了其结构的左右不对称性。生命的基本物质是生物大分子,它包括蛋白质、核酸、多糖和脂类。其中蛋白质是生命功能的执行者,其分子是右氨基酸组成的长链。每种氨基酸都应有L、D两种旋光异构体。但实验证明组成生物蛋白质的20种氨基酸都是L型的,D型氨基酸只存在于细菌细胞壁和其它细菌产物中。核酸是遗传信息的携带者和传递者,分为核糖核酸(RNA)和脱氧核酸(DNA)两种。右下图是DNA分子双螺旋结构模型,通常是右旋的。这正是生物大分子的手性特征。生物体内化合物的这种左右不对称性正是生命力的体现。维持这种左右不平衡状态的是生物体内的酶,生物一旦死亡,酶便失去活力,造成左右不平衡的生物化学反应也就停止了。由此可见,生命与分子的不对称性息息相关。问题是地球上生命发源之初,左右对称性的破缺是怎样开始的?即分子手性的起源是什么?生物的起源是什么?这些都是有待人们去研究的谜。
总之,时空、不同种类的粒子、不同种类的相互作用、整个复杂纷纭的自然界,包括人类自身,都是对称性自发破缺的产物。对称性破缺的机制是什么?实在现象中的对称性破缺与基本物理规律的对称性是否相容?不同层次的非对称性间如何关联?这些都是现代物理尚未解决的重要课题。 宇宙广大区域的真空中运行着光速的光子、中微子,超光速的引力子、反引力子,用E1=ma2方程计算,真空中蕴藏着的能量是很大的,而且不同区域的真空蕴藏的能量差异极大,如黑洞奇点的真空区和宇宙奇点的真空区与宇宙广大区域的真空相比较。
宇宙真空充满了引力子和反引力子,而且由于纯引力的黑洞存在,宇宙总体上已出现了引力子和反引力子的不对称,即引力子总量多于反引力子。对称性破缺的本质来自于宇宙真空的不对称性产生真空对称性自发破缺机制。
如果系统受到一个小扰动破坏了它的对称性,我们说它的对称性破缺,比如,原子中的这样一个扰动可以由电场引起,由于扰动的作用,原子将不再停留在它原先的定态上,而从一个能级跃迁到另一个能级,并发射或吸收一个可见光光子。对称性破缺同样出现在粒子中,这时的干扰因素就是宇宙中无所不在的引力子和反引力子。之所以出现“宇称不守恒”,是因有些粒子在真空中的引力子、反引力子的干扰下,必然会出现上述现象,而且较易出现在有弱核力参与的粒子转化过程中,因为这种力较弱,即反引力场较弱,较易受到外界的引力子或反引力子的干扰。 在宇宙中,上下级物质特别容易产生干扰,形成对称性破缺,粒子级物质较易对原子形成干扰,因为前者是后者的结构材料,同理,引力子级物质较易对粒子形成干扰,形成对称性破缺。而引力子级物质对原子、分子、生物体较难在短期内形成可察觉的干扰,因为它们存在巨大的质量差异,这种干扰只能渐进式的,一种从“量变到质变”的缓慢过程,引力子级物质最先影响粒子级物质,通过它逐渐对原子形成影响。
粒子世界的“不确定”、“测不准”就是因为粒子质量太小,而宇宙真空中的引力子、反引力子密度比光子、中微子等粒子高出很多倍,引力场使得宏观宇宙的时空都发生弯曲,粒子在无数引力子和反引力子的碰撞干扰下,出现“不确定”、“测不准”是必然的。
正是真空的这种特性,造成“宇称不守恒、CP破坏及时间(T)反演不变性的破坏、规范对称性的自发破缺”等一系列对称性丢失。而且宇宙必须存在对称中的不对称,完全对称的宇宙将会凝结,如果正奇子与反奇子在对抗与协同中完全对称,将不可能形成引力子与反引力子,如果正、反夸克组合出完全对称的正、反质子,正、反中子,今日的宇宙将只剩下微波辐射。

3. 对称破缺的科学家的观点

今年的物理学奖背景介绍即以《对称破缺》为题,充满历史感的陈述长达20页。
对称的观念古已有之,它影响了人类早期的音乐、美术等各种艺术形态,进入19世纪,对称开始对科学界产生重要影响,成为晶体学、分子学、化学、物理学等现代科学的中心观念。
在经典物理学中,各种形式的对称定律已经确认和应用,然而直到量子力学出现,对称原理才担任起一个本质性的角色。
物理学定律此前一直显示出左右之间完全对称,这种对称可以形成为一种守恒定律,称之为宇称(P)守恒,1954年出现的θ-τ难题却导致了宇称不守恒定律的提出,杨振宁和李政道因此项工作共同获得了1957年诺贝尔物理奖。
解决宇称不守恒的办法一度是引进电荷C,得到CP守恒,而芝加哥大学的克罗宁(JamesCronin)和普林斯顿大学的菲奇(ValLFitch),却于1964年在中性K-介子衰变中发现CP破坏,他们也因此获得了1980年诺贝尔物理奖。 很本分、很深刻的一位物理学家
南部阳一郎出身东京大学物理系,师承1965年诺贝尔物理奖得主朝永振一郎,二战后不久赴美,1956年开始任教于芝加哥大学。2008年10月7日物理奖宣布后不久,芝大的网站即迅速更新了头条,庆贺他们又多了一位诺奖获得者。 据中科院理论物理所研究员李淼介绍,这个奖项归属可谓不出意料。他早在博客上写道,南部得奖的可能性很大。
约十年前,李淼在芝大费米研究所(EFI)工作时期就认识南部教授,“办公室离得很近,也一起讨论过物理,特别是所谓的‘南部括号’,之后与合作者就这个问题写过一篇论文”。印象中,这位老人是“很本分、很深刻的一位物理学家 ”,虽说那时已经退休,但每隔一天去办公室,参加几乎所有理论组的学术报告。 上世纪50年代末超导研究正酣,库柏等人提出超导体中有库柏电子对,南部则想到用场论来解释超导体的对称性自发破缺,1960年更是创造性地把这条原理应用到量子力学,这是一个非常漂亮的举措,对自发性对称破缺的深入研究带来了希格斯机制:在标准模型中,所有基本粒子的质量都来源于电弱统一理论中的规范对称性自发破缺,此即标准模型对质量起源问题的直接回答。
倘若9月10日开机的LHC(很不幸它启动一个星期就开始了大修)能于不久的将来撞出希格斯粒子的话,就可以对此进行一番验证了。 克罗宁对南部评价如下:他总是走在同时代的前面,他的发现被认为是别人需要用更久的时间才能发现的。
这一评价对于其他两位获奖者同样适用。64岁的小林诚是日本高能源加速器研究机构(KEK)的名誉教授,68 岁的益川敏英是京都大学名誉教授,担任过汤川理论物理研究所(YITP)所长。他们获奖的理由是“发现对称破缺的起源,预测自然界存在第三族夸克”。
“小林-益川理论”对宇宙中只见正物质不见反物质的解释是,夸克的反应衰变速率不同,并在30多年前就作出过宇宙中存在6种夸克的预言,而当时被发现的夸克只不过3种而已。之后同行根据他们的预言不断努力,1974年粲夸克被发现,1977年底夸克被发现,1995年顶夸克也终在费米实验室的Tevatron加速器上被找到了……这些实验成果毫无疑问说明了两人是多么有洞察力。

4. 对称破缺——美妙思想来自凝聚态物理 | 量子群英传

图26-1:凝聚态大师朗道和安德森


撰文 | 张天蓉

责编 | 宁 茜


巴丁 (John Bardeen,1908 – 1991) 所获的两次诺奖都与凝聚态研究有关。凝聚态以量子理论为基础,在量子场论建立之后,理论物理朝两个不同的方向发展:粒子物理 (particle physics) 和凝聚态物理 (condensed matter physics) 。公众的眼光大多数投向传统的、以还原论思想为指导的高能粒子物理,以为那才是物理的正统方向。


然而实际上,当今的物理学家中,很大一部分是在做凝聚态物理的相关研究,包括理论和实验两个方面。凝聚态物理的理论部分,与粒子物理理论有许多相通之处。近百年来从固体到凝聚态的研究,在实用上促进了信息技术蓬勃发展,带给人们一次又一次的惊喜,典型范例是上一篇中介绍的晶体管和超导。凝聚态物理在理论上独树一帜:凝聚态研究遵循的层展论,对科学思想、科学哲学等方面作出了重大贡献;凝聚态有关对称破缺的思想,被用于粒子物理中获取质量的希格斯机制----这也是我们下一篇将介绍的内容。



朗道的相变理论

前苏联知名物理学家列夫·朗道 (Lev Landau,1908-1968) 是物理界的一位大师级人物,在理论物理多个领域中都有重大贡献。在中国学术界的心目中,朗道和费曼一样,是一位“学术卓着、特立独行”的传奇性人物。费曼因他的数本自传式读物而广为人知,朗道则以其一系列大厚本的经典物理教材而享誉学界。有关朗道的故事,如此一篇文章是写不完道不尽的,请见参考资料 [1] 。

图26-2:年轻的朗道与玻尔、海森堡、泡利、伽莫夫等在一起


朗道的费米液体 (Fermi Liquid) 及相变 (Phase Transition) 等理论,奠定了整个凝聚态物理的基础。费米液体理论,让我们可以在处理多粒子的凝聚态物理中继续使用单粒子图像。此外,朗道提出的相变理论与对称性破缺理论相关,让我们能够用序参量来描述凝聚态系统的宏观态,使用对称性来给不同物相进行分类。一般的物质有固、液、气三态,这是初中物理告诉我们的知识。后来,现代物理的研究结果,将“物质三态”的概念扩大——有了等离子态、波色-爱因斯坦凝聚态、液晶态等等,见图26-3。再后来,又扩展细分到物质的许多种不同的“相”。物质相之间的互相转换被称之为“相变”。

图26-3:相变图(包括液晶和等离子体)


固、液、气三相的变化,相应地伴随着体积的变化和热量的释放 (或吸收) 。这一类转换叫做“一级相变”,它们的数学意义是说:在相变发生点,热力学中的参量 (比如化学势) 不变化,而它的一阶导数 (体积等) 有变化。后来,实验中不断观察到的物质相及相变的数目多了,一级相变的概念便被扩展到“二级”、“三级”……N级相变,分别用热力学量的N阶导数来区分。


这些N级相变,被统称为“连续相变”。朗道对连续相变建立数学模型,提供了一个统一的描述 [2] 。他认为连续相变的特征是物质的有序程度的改变,可以用序参数的变化来描述。或者更进一步,可以看成是物质结构对称性的改变。


根据物质的对称性及其破缺的方式来研究相和相变的方法被称为“朗道范式”。也可以说由此方式才催生了凝聚态物理 [3] 。物理学家们越来越认识到,分别单独地研究固体或液体,都远远满足不了实际情况的需要。特别是掺和了低温物理之后,固体物理的研究转向了对大量粒子构成的各种体系的研究。这些系统中的粒子具有很强的相互作用,在各种物理条件下,不仅仅表现为固态、液态、液晶态、等离子态,还有超流态、超导态、波色子凝聚态、费米子凝聚态……对这些千姿百态以及它们互相转换的研究,便构成了凝聚态物理。


安德森挑战还原论

研究凝聚态物理并做出开创性奠基的另一位大师,是美国物理学家菲利普·安德森 (Philip Anderson,1923-2020) 。


今年春天,安德森以97岁高龄不幸辞世,他在对称性破缺、高温超导等诸多领域都做出了重大贡献。当他在新泽西的贝尔实验室工作时,首先提出凝聚态中的局域态、扩展态的概念和理论,为此他和另一位美国物理学家约翰·范扶累克 (John Hasbrouck van Vleck,1899-1980) 及英国物理学家内维尔·莫特 (Sir Nevill Francis Mott,1905-1996) ,分享了1977年的诺贝尔物理学奖。


除了对物理本身的杰出贡献之外,1972年,安德森在《科学》杂志上发表的着名的“More is different” (《多则异》) 的论文 [4] ,针对一切归于最简单粒子的还原论 (Rectionism) ,提出各种不同物质层次形成不同分支的层展论 (Emergence) ,被认为是凝聚态物理的独立宣言,带给了整个科学界另一个认识这个世界的视角,表达了安德森对人类传统科学方法的挑战和超越。


传统的科研方法以还原论为主,古希腊的科学就是从“追本溯源”,即“还原”开始的。所谓还原论,就是认为复杂系统可以化解为各部分的组合,并且,复杂体系的行为可以用其部分的行为来加以理解和描述。例如,物质由分子组成,分子由原子组成,原子又由更深一层的基本粒子组成,依次递推,构成了物质结构中越来越小的层次。还原论的方法便是逐层级地回答问题,期待深一层的结构能解释上一个层次所表现的性质。如此下去,科学演化的路线似乎归结为一条还原的路线,最后追溯到一个“终极问题”。


然而,安德森提出不同的观点。他认为“多则异”,还原并不能重构宇宙,部分行为不能完全解释整体行为。高层次物质的规律不一定是低层次规律的应用,并不是只有底层基本规律是基本的,每个层次皆要求全新的基本概念的构架,都有那一个层次的基础原理。也就是说,安德森教给我们不同于还原论的另一种认识这个世界的视角,即“层展论” (或称整体论) 的观点。层展论既不属于还原论,也不反对还原论,而是与还原论互补,构成更为完整的科学方法。


安德森在他的《多则异》的文章中,以凝聚态中的对称破缺为例,说明层展论。


相变——对称和对称破缺

对称性的概念不难理解,在自然界及人工的建筑、艺术等领域,几何对称现象随处可见。固体中的晶格是一种空间状态重复的几何对称结构。如果将整个晶体移动一个晶格常数a,结果仍然是原来的系统。换言之,晶格结构具有在空间平移a的变换下系统保持不变的对称性。所以,对称的意思就是系统在某种变换下保持状态不变。除了空间平移变换之外,还有空间旋转、空间反演等等其它种类的变换。除了在三维空间的各种变换之外,还有对于时间的平移或反演变换,以及其它抽象的或内禀性质的变换。各种变换对应于各种不同的对称性。


物理学中有一个诺特定理 (Noether's theorem) ,由德国女数学家埃米·诺特 (Emmy Noether,1882-1935) 发现,它将物理中的守恒定律与对称性联系在一起 [5] 。例如,能量守恒定律对应时间对称性;动量守恒对应空间平移对称;角动量守恒对应旋转对称性等等。我们在此不予详述,可见参考资料 [6] 。


大千世界不仅有对称,也有不对称。观察我们周围的世界:人的左脸并不完全等同于右脸,大多数人的心脏长在左边,大多数的DNA分子是右旋的,地球并不是一个完全规则的球形……正是因为对称中有了这些不对称的元素,对称与不对称的和谐交汇,才创造了我们丰富多彩的世界。


即便是对称的情况,也有各种等级的高低之分。比如说,一个正三角形,和一个等腰三角形比较,正三角形应该更为对称一些;球面比椭球面具有更多的对称性。此外,物体状态的对称性也会变化,从低到高,或者从高到低。

图26-4:相变和对称破缺


朗道将凝聚态物理中的相变与物质结构中对称性的变化联系在一起。他把从高对称到低的对称过程叫做“对称破缺”。相应的,反过来的相变则意味着“对称恢复”。然而,如何判断对称性的“高低”呢?特别需要提醒的是:有时候我们会将“对称性”与“有序性”等同起来,但事实上这两个概念的“高低”程度正好相反。越有序的结构,对称性反而越低。以下举个简单例子来说明。


图26-4上方所示的是“固态 液晶 液态”过程中物质分子结构的变化。这三者的对称性,到底孰高孰低呢?


固态中水分子有次序地排列起来,形成整齐漂亮的格子或图案 (晶格) ;在液晶中,三维晶格被破环了,成为一维晶体。之后,随着温度继续升高,一维的有序结构也被破坏而成为无序的液体:液态中的水分子做着随机而无规则的布朗运动 (Brownian Motion) ——没有固定的方向,没有固定的位置,处于完全无序的状态,在任何方向、任何点看起来都是一样的。而这正是我们所谓的对称性最“高”的状态,也就是说,液态的对称性很高,却无序。液晶和固态,相较液态而言,有序程度逐渐增加,对称性却逐步降低。


用数学的语言来描述的话,液态时,如果将空间坐标作任何平移变换,系统的性质都不会改变,表明对空间的高度对称。而当水结成冰之后,系统只在沿着某些空间方向,平移晶格常数a的整数倍的时候,才能保持不变。所以,物质从液态到固态,对称性降低,也就是破缺了,从连续的平移对称性减少成了离散的平移对称性。或叫做:固态破缺了液态的连续平移对称性,即晶体是液体的任意平移对称性破缺的产物。相比于液体,晶体的粒子密度出现了空间上的周期调制,因而更加有序,而从无到有的周期调制的变化,便可以表征物质从液体结晶为固体时的相变。


对称破缺 (Symmetry Breaking) 分为两大类:明显对称性破缺 (Explicit Symmetry Breaking) 和自发对称性破缺 (Spontaneous Symmetry Breaking) 。第一类“对称破缺”的原因是自然规律决定的,是因为某些物理系统本身就不具有某些物理规律对应的对称性,这类对称破缺的着名例子是李政道与杨振宁发现的“弱相互作用中宇称不守恒” (CP violation) 。


第二类“自发对称破缺”是物理学家更感兴趣的。这种情况下,物理系统仍然遵循某种对称性,但物理系统更低的能量态 (包括真空态) 却不具有此种对称性。这种对称破缺的着名例子包括我们在上一篇中介绍的超导物理中的BCS理论,以及下一篇将介绍的基本粒子标准模型中的希格斯机制 (Higgs Mechanism) 。


自发对称破缺

将“自发对称破缺”再表达得更清楚一些,就是说物理规律具有某种对称性,但是它的方程的某一个解,也就是物理系统实际上所处的某个状态,却不具有这种对称性。这样,我们看到的世界中一切现实情况,都是“自发对称破缺”后的某种特别情形。因此,它只能反映物理规律的一小部分侧面。图26-5中举了几个日常生活中的例子来说明对称性的“破缺”。

图26-5:自然界的明显对称破缺和自发对称破缺


图26-5a中所示是一个在山坡上的石头,山坡造成重力势能的不对称性,使得石头往右边滚动,这是一种明显对称性破缺。在图26-5b的情况,一支铅笔竖立在桌子上,它所受的力是四面八方都对称的,它朝任何一个方向倒下的几率都相等。但是,铅笔最终只会倒向一个方向,这就破坏了它原有的旋转对称性。这种破坏不是由于物理规律或周围环境的不对称造成的,而是铅笔自身不稳定因素诱发的,所以叫自发对称破缺。图26-5c的水滴结晶成某个雪花图案的过程也属于自发对称性破缺。


日裔美国物理学家南部阳一郎 (Yoichiro Nambu,1921-2015) 首先将“对称破缺”这一概念从凝聚态物理引进到粒子物理学中 [7] 。南部为此和另外两位发现正反物质对称破缺起源的日本物理学家小林诚 (Kobayashi Makoto,1944-) 和益川敏英 (Toshihide Maskawa,1940-) 分享了2008年的诺贝尔物理学奖。



参考文献:

[1].张天蓉科学网博文:《硅火燎原》-21-个性奇特的朗道http://blog.sciencenet.cn/home.php?mod=space&uid=677221&do=blog&id=724191

[2].于禄,郝柏林。《相变和临界现象》,科学出版社,1992

[3].L.D. Landau,On the theory of phase transitions,1937Published in: Zh.Eksp.Teor.Fiz. 7 (1937) 19-32, Phys.Z.Sowjetunion 11 (1937) 26, Ukr.J.Phys. 53 (2008) 25

[4].Anderson, More is different, Science Vol. 177, pp. 393-396(1972)

[5].Kosmann-Schwarzbach, Yvette (2010). The Noether theorems:Invariance and conservation laws in the twentieth century. Sources and Studiesin the History of Mathematics and Physical Sciences. Springer-Verlag.

[6].张天蓉科学网博文:统一路-8-对称和守恒http://blog.sciencenet.cn/home.php?mod=space&uid=677221&do=blog&id=882465

[7].Nambu, Y.; Jona-Lasinio, G. (April 1961). "DynamicalModel of Elementary Particles Based on an Analogy with Superconctivity.I". Physical Review 122: 345–358.

5. 有没有可能强弱相互作用也可以产生波

弱相互作用共有两种。第一种叫"载荷流相互作用",因为负责传递它的粒子带电荷(W+或W−),β衰变就是由它所引起的。第二种叫"中性流相互作用",因为负责传递它的粒子,Z玻色子,是中性的(不带电荷)。上图为一β−衰变的费曼图,一中子衰变成质子、电子及电中微子各一,衰变的中间产物为一粒重的W−玻色子。在其中一种载荷流相互作用中,一带电荷的轻子(例如电子或μ子,电

长久以来,人们以为自然定律在镜像反射后会维持不变,镜像反射等同把所有空间轴反转。也就是说在镜中看实验,跟把实验设备转成镜像方向后看实验,两者的实验结果会是一样的。这条所谓的定律叫宇称守恒,经典引力、电磁及强相互作用都遵守这条定律;它被假定为一条万物通用的定律。然而,在1950年代中期,杨振宁与李政道提出弱相互作用可能会破坏这一条定律。吴健雄与同事于1957年发现了弱相互作用的宇称不守恒,为杨振宁与李政道带来了1957年的诺贝尔物理学奖。尽管以前用费米理论就能描述弱相互作用,但是在发现宇称不守恒及重整化理论后,弱相互作用需要一种新的描述手法。在1957年罗伯特·马沙克(Robert Marshak)与乔治·苏达尚(George Sudarshan),及稍后理乍得·费曼与默里·盖尔曼,提出了弱相互作用的V−A(矢量V减轴矢量A或左手性)拉格朗日量。在这套理论中,弱相互作用只作用于左手粒子(或右手反粒子)。由于左手粒子的镜像反射是右手粒子,所以这解释了宇称的最大破坏。有趣的是,由于V−A开发时还未有发现Z玻色子,所以理论并没有包括进入中性流相互作用的右手场。然而,该理论允许复合对称CP守恒。CP由两部份组成,宇称P(左右互换)及电荷共轭C(把粒子换成反粒子)。1964年的一个发现完全出乎物理学家的意料,詹姆斯·克罗宁与瓦尔·菲奇以K介子衰变,为弱相用作用下CP对称破缺提供了明确的证据,二人因此获得1980年的诺贝尔物理学奖。小林诚与益川敏英于1972年指出,弱相互作用的CP破坏,需要两代以上的粒子,因此这项发现实际上预测了第三代粒子的存在,而这个预测在2008年为他们带来了半个诺贝尔物理学奖。跟宇称不守恒不一样,CP破坏的发生概率并不高,但是它仍是解答宇宙间物质反物质失衡的一大关键;它因此成了安德烈·萨哈罗夫的重子产生过程三条件之一。

μ及τ)的类型(代)跟相互作用前的轻子一致,同样地,一下型夸克(电荷为−1⁄3)可以通过发射一W−玻色子,或吸收一W+玻色子,来转化成一上型夸克(电荷为+2⁄3)。更准确地,下型夸克变成了上型夸克的量子叠加态:也就是说,它有着转化成三种上型夸克中任何一种的可能性,可能性的大小由CKM矩阵所描述。相反地,一上型夸克可以发射一W+玻色子,或吸收一W−玻色子,然后转化成一下型夸克:由于W玻色子很不稳定,所以它寿命很短,很快就发生衰变。例如:W玻色子可以衰变成其他产物,可能性不一[24]。在中子所谓的β衰变中,中子内的一下夸克,发射出一虚W−玻色子,并因此转化成一上夸克,中子亦因此转化成质子。由于过程中的能量(即下夸克与上夸克间的质量差),W−只能转化成一电子及一反电中微子在夸克的层次。

6. 对称性破缺的生物

对称性破缺与生物起源
二次迭代Mandelbrot 集与分子填充为组织的迭代比较。他们源于不同的非线性过程,诸多分形结构都具有M 集的类似特征。这个过程是高度非线性的,依赖这样的非线性使得结构具有自相似性。生物源于宇宙对称性破缺,分子系统丰富多彩的结构也通过对称破缺而发展。 二次迭代Mandelbrot 集与分子填充为组织的迭代比较 那么从宇宙物质产生到产生生命要经历那些不对称的过程呢?
宇宙形成过程就是对称性破缺,最初的宇宙为对称真空态(作为奇点的量子真空以指数方式膨胀,即暴涨),宇宙的对称性逐步丧失。随着宇宙的膨胀和降温,原真空态发生一系列相变:10-44s 时,引力作用分化出来,夸克和轻子可相互转变。 四种作用力由于宇宙真空对称破缺而分化分化,在高能状态四种作
用力又能统一为超力。 10*(-36)s 时强相互作用同电,弱作用分离,开始出现物质与反物质的不对称;10*(-10)s 后,弱作用与电磁作用分离。要产生物质构成的世界,就必须正反物质不对称;否则就会湮灭。最初宇宙正反物质几乎一样多,不对
称度仅为A=3×10*(-8)。宇宙演化产生不对称机制,使得重子数不对称;这就要求CP的对称破缺,打破了重子
数的守恒,从而形成现在物质占主要的世界。物质在四种作用力下分层次演化。通过复杂的核合成过程形成早期的原子核,再形成原子和分子。
前面提到电弱作用力间对称破缺的Higgs 机制,在最低能量下不为0 的真空极化从而导致电弱对称破缺。电弱作用力通过“弱荷流”(W)和“弱中性流”(Z )区分的(弱荷看成电荷,中间玻色子看成电磁波的光子)。任何两个基本粒子间的这些流的强度取决于粒子间的距离和它们的电荷。电子档靠近原子核时,受到中性弱力引起电子轨道的扰动,使它选择手性。如图(i)轨道是非手性的,但是由于Z0 扰动导致出现手性旋转,图中(b)代表自发对称破缺(Autocatalytic symmetry-breaking)源于随机的手性分岔,弱扰动破坏稳定性从而形成具有手性的(iii)。这样的对称破缺会被放大到聚合系统中,在分子D 和L 构型的竞争中,哪个具有负反馈系统那个就会占主导。
奥克兰大学的Chris C. King 在宇宙生物学论文中提到在Murchison 陨石(1969 年落于澳大利亚)上非生物氨基酸往往倾向于左手构型。这说明,在生物产生以前这种不对称机制就可能已经存在。 宇称不守恒弱相互作用对应于产生手性分子有两种假说。一种是以带电电流宇称不守恒(Charged Current-Parity Non conservation:CC-PNC)为基础的假说,认为由于CC-PNC,β衰变产生径向极化电子,进入物质内部产生圆偏振光辐射,导致底物分子立体选择合成或分解,从而产生手性分子。
另一种以弱中性流宇称不守恒(Neutral Current-Parity Non conservation:NC-PNC)为基础的假说,认为NC-PNC 造成对映体之间微小的能差叫宇称破缺能差(Parity Violating Energy Difference, PVED),PVED 进一步在对映体分子的物理性质及反应速率上形成差别,经过放大可以产生均一的手性。
Vester-Ulbricht机理一个基本粒子(电子或正电子)静止时是球对称的,因此是非手征性的。但一个自旋粒子沿着自旋轴的任一方向移动时,它就成为手征性的。β-电子为左手螺旋电子,β+电子为右手螺旋电子。Goldharber 在1957 年发现,从某一辐射核ß 衰变中产生的电子是径向偏振的,由此电子产生的韧致辐射产生圆偏振光。
1959年Vester 和Ulbricht首先将β衰变的不对称性和生物分子的不对称性联系起来,提出Vester-Ulbricht机制。不对称性可从基本粒子水平转移到分子水平,ß 衰变所表现的手性与自然界生物分子的手性间有因果关系。ß 衰变中产生的偏振电子,对外消旋分子或前手性分子产生非对称性影响,最后由不对称合成或分解产生手性分子。β衰变→纵向偏振电子→园偏振电子→不对称光化学作用→手性的。
Vester-Ulbricht机理的相关实验1968 年,Garay 将1.33e7Bq 的SrCl2,分别加入到L 与D 型酪氨酸的碱性溶液中,在室温放置18 个月后,发现D-酪氨酸分解比L 型显着,并认为这是由于发生偏振光的ß 射线作用,是D-酪氨酸进行了立体有择性分解。1975 年Bonner 用120keV 的线性加速器,来产生天然的自然反平行(AP)“左手性”电子,也可产生非天然的自旋平行(P)“右手性”电子,进行辐解D-和L-亮氨酸的实验。在53%-76%样品分解后,AP 电子产生0.60%-1.42%过量的L-亮氨酸,P 电子可产生0.74%-1.14%过量的D-氨基酸。1976年Darge 等将标记32P 的磷酸盐加入到消旋的D、L-色氨酸水溶液中,在-25℃下放置12 周后测定紫外光谱,发现色氨酸的分解率为33%,必旋光度为+(0.7±0.4)e-3 度。由此可见L-色氨酸比D-色氨酸优先分解,造成了大约19%的D-色氨酸的浓集。这一结果与Garay的结果矛盾。但Bonner重复Garay和Darge的实验,Hodge重复Bonner的实验,都没得到立体选择的结果,使得这一假说争论了近半个世纪。
王文清认为γ射线无手性选择分解;β电子对氨基酸的不对称分解只有在低温、初始阶段远离平衡态,即在开放体系才能得到,如无放大机制,达到热力学平衡差别消失。王文清根据王建英、罗辽复理论研究,以量子力学的理论方法,从β电子与手性分子的电磁作用出发,探讨了β电子和正电子在不对称分子上的非弹性碰撞,证明了对于对映异构体D-和L-氨基酸分子,碰撞截面的相对差值。差值F与旋光强度和和偶极强度的比值成比例,数值上为10-6量级,通过运算得到,当L型分子旋光强度大于零时,极化电子优先分解D型分子,反之当旋光强度小于零时,极化电子优先分解L型分子。1993 年王文清、罗辽复在意大利国际生命起源会议上指出:长期以来,人们忽视了构型和旋光兴并不是同一概念,&szlig; 粒子是对氨基酸的旋光性(左旋Rn<0,,右旋Rn>0)有选择,而不是对构型(D,L)有选择。
β电子和手性分子左右不对称碰撞,导致某些特定的化学反应速率常数的不对称为10*(-6)量级,并且对于每一确定的化学反应都有确定的符号。速率常数的不对称性将在反应扩散方程中加入不对称的外力项,在反应扩散方程的解-L和D型分子的浓度中,这种不对称效应被明显放大。根据丁达夫、徐京华分析,如果不对称外力为η量级,则解的不对称性可达η1/3的量级。因此,在β电子照射下,通过适当的化学反应可使D和L型氨基酸分子的相对浓度差别达到10*(-2)~10*(-3)。另一方面,如果这种化学反应与多聚链的形成有关,当链长为10*(2)~10*(3)个分子时,L和D型分子链的浓度差别将达到0(1)的量级。这就有可能解释为什么很多生物大分子都具有确定的手性。 1991 年Salam 提出:Salam认为电磁力不是唯一引起化学反应力,电弱Z0也在化学效应中期作用。由于Z0相互作用,电子与电子耦合成库柏对,借助量子力学协同效应,由于玻色凝聚,在某一临界低温Tc 下引起二级相变,包括D 型氨基酸向L性相变。一般来说,Tc 是个低温值,地球作为L-氨基酸形成之地太热了。所以他设想,在低温、原始宇宙空间早在地球形成前氨基酸的手性选择就已进行(这和陨石发现吻合)。S.F.Mason G.E.Trantar 对若干个L 型和D 型氨基酸的能量进行了详细的计算,并考虑了不对称的Z力,预料中的对映体之间的能量分裂出现了。在所有情形下,生物学上占优势的L-氨基酸和D-核糖都具有较低的能量。计算结果如下:(L-D)Ala:
-3.0×10-19ev;(L-D)Val:-6.2×10-19ev;(L-D)Ser:-2.3×10-19ev;(L-D)Asp:-4.8×10-19ev;(L-D)核糖:+1.8×10-19ev可见,对映体分子间的能量差数量级为10-19ev。300K 时,L型比D 性氨基酸数量多1/107。
1994 年4 月王文清、盛湘蓉与杨宏顺、陈兆甲科研组合作,利用搽粉绝热连续加热量法在77.35K 到300K 区间,以0.5K/min升温速率(或降温速率)测定D-缬氨酸和L-缬氨酸的比热容与T 图,发现D-缬氨酸在270±1K 有明显λ相变,而L-缬氨酸则无。经多次热循环及以L-缬氨酸作参比样品,D-缬氨酸在同一温度均重复出现比热容尖峰。D-缬氨酸单晶X 衍射晶格数据显示,在临界温度Tc 前后,无明显晶格变化。试探排除了水汽、结晶水及晶格变化对比热容的贡献,王文清等人认为比热容异常是由于电子耦合成库柏对及协同效应的S电子比热容贡献,并认为D-缬氨酸的相变可能是D 型向L 型转变的二级相变。同样,对于D-丙氨酸单晶分子,在低温200K 到300K 出现了磁相变,这与比热容测出的λ相变温度一致,人们认为,该温度也许就是D-丙氨酸向L-型转变的二级相变。
Salam 假说:1.亚原子水平上表现出的Z 力结合电磁相互作用,在凝聚态氨基酸单晶D 和L 型分子中被首次检测到,这在理论上有重大意义;2.D-丙氨酸和D-缬氨酸均在实验中发现了比热容的λ相变,这将有助于证明Salam 假说中提到的D 型氨基酸向L-型转变的二级相变。 首先Garay等人的实验都不能严密地证明V-U机理,Bonner 的实验中,当电子能量为60eV 时,选择分解消失。而且,对上述实验的一些重复也往往既得不到肯定也得不到否定的结果。按照王文清提出的构型和旋光兴并不是同一概念,&szlig; 粒子是对氨基酸的旋光性有选择,而不是对构型(D,L)有选择。因此不能解释生命分子构型的手性单一性。而在Salam 假说中10-19ev如此微小的概率差异,能否成为生命选择单一手性机制的原因?就算二级相变存在,从氨基酸混消旋体转变成某种手性单一的氨基酸分子的过程,需要越过一个大的活化能势垒。如果这个相变发生,将导致化学键断裂。显然,这两种学说及相关实验只证明了手性分子极其微小的对称差异,这不是生命手性分子起源的根本。陨石分子的发现和这些实验说明在生命产生之前,手性分子在数量上微小的差异就已经存在;但这样的差异必定要通过一个放大机制给予放大,才能形成现在生物分子的单一手性。

阅读全文

与CP破缺研究方法相关的资料

热点内容
初中物理思路技巧方法 浏览:912
酱油糖蒜怎么做传统黑蒜制作方法 浏览:974
吻式美容仪的使用方法 浏览:517
怎么找胶带最简单的方法 浏览:461
如何取出倒数的方法 浏览:384
魔方十种复原方法怎么弄 浏览:800
不看手机的方法 浏览:931
觅蛙的正确方法视频 浏览:449
笔记本电脑如何开机的方法 浏览:176
热刺传球训练方法 浏览:382
打巨人城最简单的方法 浏览:333
给宝宝断奶有什么方法可以回奶 浏览:451
拉法基嵌缝膏使用方法 浏览:826
大牙齿有洞什么方法治疗效果好 浏览:105
德国煮蛋器wmf使用方法 浏览:360
抄板的正确方法 浏览:849
乐观的同桌怎么用冒号的方法写 浏览:106
重庆流产哪里好弆五洲妇儿方法 浏览:16
夜光粉制作简单方法9岁 浏览:462
完成任务的常用方法 浏览:411