仪器分析法
仪器分析法是以物质的物理和物理化学性质为基础,并借用特殊仪器设备的分析方法它包括光学分析法、电化学分析法、色谱分析法和质谱分析法等。
1)光学分析法
这是根据物质的光学性质建立的分析方法。主要有分光光度法,在可见光区称比色法,在紫外和红外光区分别称为紫外和红外分光光度法。此外,还有原子吸收法、发射光谱法及荧光分析法等。
2)电化学分析法
这是根据物质的电化学性质所建立的分析方法,如电导分析法、电流滴定法、库仑分析法、电位分析法、伏安法和极谱法等.
3)色谱分析法
这是一种重要的分离富集方法,主要有气相色谱法、液相色谱法,以及离子色谱法。
4)其他分析法
其他分析法包括质谱法、核磁共振和X射线等。仪器分析的优点是操作简单、快速,灵敏度高,有一定的准确度,适用于生产过程中的控制分析及微量组分的侧定。缺点是仪器价格较高,平时的维修要求较高,越是复杂、精密的仪器, 维护要求就越高。此外,在进行仪器分析时,分析的预处理及分析的结果必须与标准物质作比较,而所用的标准物质往往需用化学分析方法进行测定。因此,化学分析方法与仪器分析方法 是互为补充的。
以上方法都有其特点,也有其局限性,通常要根据被测物的性质、含量、试样的成分和对分析结果准确度的要求,选用最合适的分析方法。
Ⅱ 气相色谱法定性分析有哪些方法
那就有好多,最常用的是:
1.质谱仪定性。(如果有质谱仪的话)
2.保留时间对比。但保留时间相同,并不一定就是同种物质。此时可用双柱定性确证,若换了根不同极性的柱子,疑似组分的标样与样品的保留时间还是非常接近,那可以确认定性了。
3.纯物质加入法,在样品中加入待测的纯物质,进样,与前一个谱图对比,你会发现一个峰变高了,而其他峰变低了,那这个组分就是待测物质。
还有很多,不是很常用的,不一一写了。
Ⅲ 常见的仪器分析方法有哪几类,它们进行分析时各依据物质的哪些主要性质
常见的仪器分析方法:光分析法、电化学分析法、色谱分析法、质谱分析法、热分析法、分析仪器联用技术。
1.红外光谱仪的主要部件包括:光源、吸收池、单色器、检测器及记录系统。
2.红外光谱是基于分子的振动和转动能级跃迁产生的。
3.物质的分子、原子、离子等都具有不连续的量子化能级,只有当某波长光波的能量与物质的基态和激发态的能量差相等时,才发生物质对某光波的吸收,也就是说物质对光的吸收是有选择性的。
4.红外光谱仪用能斯特灯与硅碳棒做光源。
5.在光谱法中,通常需要测定试样的光谱,根据其特征光谱的波长可以进行定性分析;而光谱的强度与物质含量有关,所以测量其强度可以进行定量分析。
6.根据光谱产生的机理,光学光谱通常可分为:原子光谱、分子光谱。
7.紫外可见分光光度计用钨丝灯、氢灯或元灯做光源。
Ⅳ 仪器分析方法的分类
仪器分析法是使用较特殊仪器的分析方法,是以物质的物理或物理化学性质为基础的分析方法。根据物质的某种物理性质,如相对密度、相变温度、折射率、旋光度及光谱特征等,不经化学反应,直接进行定性、定量、结构和形态分析的方法,称为物理分析法,如光谱分析法等。根据物质在化学变化中的某种物理性质,进行定性或定量分析的方法称为物理化学分析法,如电位分析法等。仪器分析法具有灵敏、快速、准确的特点,发展快,应用广。主要包括电化学分析法、光学分析法、质谱分析法、色谱分析法、放射化学分析法等。法医毒物分析工作中常用的仪器分析法有光谱分析、色谱分析和色/质联用分析,后两者有很好的分离和定性定量分析效能。
Ⅳ 气相色谱定性分析中化学方法定性法具体内容是
在气相色谱分析中,当操作条件确定后,将一定量样品注入色谱柱,经过一定时间,样品中各组分在柱中被分离,经检测器后,就在记录仪上得到一张确定的色谱图。由谱图中每个组分峰的位置可进行定性分析,由每个色谱峰的峰高或峰面积可进行定量分析。
气相色谱的定性分析就是要确定色谱图中每个色谱峰究竟代表什么组分。因此必须了解每个色谱峰位置的表示方法及定性分析的方法。
常用的定性分析方法:
(1)纯物质对照法 对组成不太复杂的样品,若欲确定色谱图中某一未知色谱峰所代表的组分,可选择一系列与未知物组分相接近的标准纯物质,依次进样,当某一纯物质的保留值(可为tr'、ris、Vg、I)与未知色谱峰的保留值相同时,即可初步确定此未知色谱峰所代表的组分。
严格的讲,仅在一根色谱柱上利用纯物质和未知组分的保留值相同,作为定性的依据是不完善的,因为在一根色谱柱上,可能有几种物质具有相同的保留值。如果可能,应在两根极性不同的色谱柱上进行验证,如在两根极性不同的柱上纯物质和未知组分的保留值皆相同,就可确证未知物与纯物质相同。
(2)利用保留值的经验规律定性 大量实验结果已证明,在一定柱温下,同系物的保留值对数与分子中的碳数成线性关系,此即为碳数规律,可表示为:
logtr'=an+b
式中 n——碳数;
a——直线斜率;
b——直线在logtr'轴上的截距。
另外同一族的具有相同碳数的异构体的保留值对数与其沸点成线性关系,此即为沸点规律,可表示为:
logVg=a1Tb+b1
式中 Tb——沸点;
a1——直线斜率;
b1——直线在logVg轴上的截距。
当已知样品为某一同系列,但没有纯样品对照时,可利用上述两个经验规律定性。
(3)利用其它方法定性
① 利用化学方法配合进行未知组分定性:有些带官能团的化合物能与一些试剂起化学反应从样品中除去,从比较处理前后两个样品的色谱图,就可以认出那些组分属于某族化合物。
还可在柱后把流出物通入有选择性的化学试剂中,利用显色、沉淀等现象对未知物进行定性。只要在柱后更换装有不同试剂的试管,就有可能对混合样中各组分进行鉴定。
② 结合仪器进行定性:气相色谱是比较高效的分离分析工具,但对复杂的混合物单靠色谱定性鉴定存在很大的困难,而红外光谱、质谱、核磁共振等仪器分析方法对化合物的定性鉴定是很有特征的,但对复杂混合物的分析有困难,因此如果用气相色谱法将复杂混合物分成单个或简单的组成,然后用质谱、光谱鉴定则有助于解决许多问题。早期用质谱、光谱定性都是把色谱分离后的有关馏分分别收集,再用质谱仪或光谱仪逐个鉴定,近年来发展了气相色谱与质谱或红外光谱在系统上直接联用的色谱-质谱仪和色谱-红外光谱仪,分离和定性同时进行,当色谱分析完毕时,质谱或光谱的谱图也就全部得到。
Ⅵ 仪器分析的分析方法
发射光谱法:依据物质被激发发光而形成的光谱来分析其化学成分。使用不同的激发源而有不同名称的光谱法。如用高频电感耦合等离子体(ICP)作激发源,称高频电感耦合等离子体发射光谱法;如用激光作光源,称激光探针显微分析。
原子吸收光谱法:基于待测元素的特征光谱,被蒸气中待测元素的气态原子所吸收,而测量谱线强度减弱程度(吸收度)求出样品中待测元素含量。应用较广的有火焰原子吸收法和非火焰原子吸收法,后者的灵敏度较前者高4~5个数量级。
原子荧光分光光度法:通过测量待测元素的原子蒸气在辐射能激发下所产生的荧光发射强度来测定待测元素。
红外吸收光谱法:主要用于鉴定有机化合物的组成,确定化学基团及定量分析,已用于无机化合物。
紫外可见分光光度法:适用于低含量组分测定,还可以进行多组分混合物的分析。利用催化反应可大大提高该法的灵敏度。
荧光分光光度法:对某些元素具有较高的灵敏度和选择性。
红外傅里叶变换光谱法:光信号以干涉图形式输入计算机进行傅里叶变换的数学处理,具有信噪比大、灵敏度高等特点。
核磁共振波谱法:利用有机分子的质子共振鉴定有机化合物和多组分混合物的组分以及无机成分的分子结构分析。
电子自旋共振法:以磁场对离子、分子或原子所含未成对电子的作用所引起的磁能级分裂为基础的分析方法。
拉曼光谱法:可测定分子结构,使用可调激光器的曼光谱仪用于微量分析,也可用于无机物和单晶的结构分析。
射线荧光光谱法:具有谱线简单,基体影响小,选择性高,测定范围宽等优点。可对原子序数大于9的所有元素作无损分析。电子探针微区分析可分析原子序数大于4的所有元素,应用于微粒矿物岩石分析,金属材料中元素的分布,各种物相中元素的分配。
发射光谱法
电子能谱法:是测定电子结合能的一种方法,它是研究表面化学的有力工具,并可用于除H和He以外任何元素的定性分析。
俄歇电子能谱法:应用于分析无机及有机试样的组成,价态及结构,一般为无损分析。放射化学分析,有中子活化法、光子活化法、带电粒子活化分析法等。
穆斯堡尔谱法:所探测的对象是单个的原子核,可用于研究材料中的杂质原子和空位对材料性能的影响。质谱分析,具有高鉴别及检测能力,可以分析所有元素。火花源质谱适于测定痕量元素。离子探针微区分析,微区直径约1~5□m,深度约几十埃,可进行扫描分析,几乎可分析所有的元素。
极谱法:是利用阴极(或阳极)极化变化过程作为依据的一种方法。其特点是灵敏度高、试液用量少,可测定浓度极小的物质。
离子选择性电极法:是一种使用电位法来测量溶液中某一离子活度的指示电极,能快速、连续、无损地对溶液中的某些离子活度进行选择性地检测。
库仑分析法,其中有控制电位库仑分析法和恒电流库仑滴定法。
色谱法:是一种分离分析法,利用混合物中各组分在不同的两相中溶解、解析、吸附、脱附或其他亲和作用性能的差异,而互相分离。按流动相的物态,可分为气相色谱法和液相色谱法,按固定相使用形式,可分为柱色谱法、纸色谱法和薄层色谱法。
Ⅶ 光谱仪器用于定性分析的几种方法
资料介绍光谱仪器的定性分析是指:由于各种元素的原子结构不同,在光源的作用下都可以产生自己特征的光谱。如果一个样品经过激发摄谱在感光板上有几种元素的谱线出现,就证明该样品中有这几种元素。这样的分析方法就叫做光谱定性分析方法。光谱仪器用于定性分析方法有以下几种:1.比较光谱分析法:这种方法应用比较广泛,它包括标准试样比较法和铁谱比较法。标准样品比较法一般适用于单项定性分析及有限分析。铁谱比较法它不但可以做单项测定还便于做全分析。2.谱线波长测量法:光谱分析仪器利用谱线波长测量法进行定性分析是先测出某一谱线的波长,再查表确定存在的元素,这种方法在日常分析中很少使用,一般只是在编制谱图或者做仲裁分析时才用。
一般来讲光谱分析仪器定性分析可以分析元素周期表上的70几个元素,但由于受到仪器和光源条件的限制有些元素如非金属及卤族元素等则需要在特殊的条件下才能测定。光谱仪器定性分析的样品可以是多种多样的,所以光谱定性采用的方法各不相同,对于易导电的金属试样可以将试样本身作为电极直接用直流电孤或交流电孤光源分析。有时为了不损坏试样也可以采用火花和激光显微光源分析。对于有机物一般先进行化学处理,使之转化成溶液用溶液残渣法测定,也可以灼烧、灰化将试样处理成均匀的粉末装在碳电极孔中用直流电孤或交流电孤光源分析测定。光谱仪器定性分析的特点是方法简单、速度快、需要样品量少并且任何形式的样品都可以分析。对于大部份元素都有比较高的灵敏度。光谱定性分析可以分析试样中一个或几个指定元素,也可以全分析试样中所有可能存在的元素。根据灵敏线的强弱来判断它们在试样中的大致含量。光谱定性分析只能给出试样中存在元素、的粗略含量范围,如大量、少量,还是微量。要想得到元素的正确含量就必须做光谱定量分析。
Ⅷ 化学仪器分析方法具体有哪些
仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等.
Ⅸ 常见的仪器分析方法有哪些
现代仪器分析主要分析方法有:1、光学分析法:1)原子光谱法(原子发射光谱法;原子吸收光谱法;原子荧光光谱法);2)分子光谱法(紫外分光光度法;可见分光光度法;红外分光光度法);2、电化学分析法:1)电导分析法;2)电位分析法;