❶ 它的化学名称是二甲基四异丙基己烷
B 解析:本题有以下两种解法: 方法 1 (常规解法):逐项分析。 ①错。按系统命名法,应在阿拉伯数字和汉字之间加短横杠“—”。 ②错。编号和书写取代基都应遵循“简单在前,复杂在后”的原则。正确命名为: 3 —甲基— 3 —乙基戊烷。故③正确。 ④错。选主链应遵循支链尽量多的原则,且汉字之间不应加短横杠相隔;正确命名为: 2 , 3 , 5 —三甲基— 4 —乙基己烷。由此可知⑥正确。 ⑤错。编号应遵循最低系列原则,摒弃序号之和最小原则。正确命名为: 2 , 3 , 6 , 6 , 8 —五甲基壬烷。 方法 2 (排除法):①错则排除 A 、 D 选项。 B 、 C 选项中皆不含②,故可不对②进行分析。由③正确,可知答案。
❷ Karl_Fischer 法
用来测定样品中水分含量的(ppm级)测定方法。
使用水分测定仪器操作方法比较简单,就不说明了。
❸ 异丙基联苯是指单异丙基联苯么有什么用途
异丙基联苯是指单异丙基联苯,如果不做特殊说明,异丙基联苯就是指单异丙基联苯。
异丙基联苯,为透明液体。熔点4℃。沸点291℃。相对密度0.96。折射率1.569。闪点100℃。与大多数有机溶剂可混溶。用于载热体、高真空泵油、润滑油及表面活性物质等的原料。
❹ 求助“N-N二异丙基乙基胺(又名DIPEA)”及辛酸铑的检测方法
对N-N二异丙基乙基胺的纯度等可采用色谱分析。参考:.....对N-N二异丙基乙基胺粗产品进一步精馏提纯,提纯后的产物经色谱分析,产品w
(DIPEA)
≥99.15%参考文献来源于CNKI:N,N-二异丙基乙胺合成方法的研究--《安徽农业科学》2010年07期
http://www.cnki.com.cn
...
201007007.htm
❺ 导热油成分有哪些
导热油不是单一的一种成分物质,现有的导热油类型主要有合成型和矿物型;
第一种是比较普通也是使用比较多的类型,称为矿物型导热油。它其实是一种混合物,是石油精制过程某一馏程产物,其主要成分随基础油的成分不同而不同;化学组成一般为长链烷烃和环烷烃的混合物。
第二种是性能更好,很多大型厂子比较青睐的合成型导热油,它的价钱一般来说也是要比矿物型高些。按照化学组成一般分为以下几类:
1)烷基苯型(苯环型)导热油这一类导热油为苯环附有链烷烃支链类型的化合物,属于短支链烷烃基(包括甲基、乙基、异丙基)与苯环结合的产物。
2)烷基萘型导热油这一类型导热油的结构为苯环上连接烷烃支链的化合物。
3)烷基联苯型导热油这一类型的导热油为联苯基环上连接烷基支链一类的化合物。
4)联苯和联苯醚低熔混合物型导热油这一类型的导热油为联苯和联苯醚低熔混合物由26.5%的联苯和73.5%的联苯醚组成。
以上是安美导热油提供。
❻ 导热油的型号,基本参数
一、型号
1、烷基苯型(苯环型)导热油。属于短支链烷烃基(包括甲基、乙基、异丙基)与苯环结合的产物。其沸点在170~180℃,凝点在-80℃以下,故可做防冻液使用。
2、烷基萘型导热油。其附加侧链的种类及数量决定化合物的性质。侧链单于甲基相连的烷基萘,应用于240~280℃范围的气相加热系统。
3、烷基联苯型导热油。它是由短链的烷基(乙基、异丙基)与联苯环相结合构成,烷基的种类和数量决定其性质。烷烃基数量越多,其热稳定性越差。
4、联苯和联苯醚低熔混合物型导热油。此类产品因为苯环上没有与烷烃基侧链连接,而在有机热载体中耐热性最佳。这种凝点(12.3℃)低熔混合物,在常温下,沸腾温度在256~258℃范围内使用比较经济。
5、烷基联苯醚型导热油。此类混合导热油低温下运动粘度低,流动性好,适合北方寒冷地区使用,推荐使用温度最高不超过330℃,凝点-54℃。
6、矿物型导热油。是石油精制过程某一馏程产物,其主要成分随基础油的成分不同。一般为长链烷烃和环烷烃的混合物。
二、基本参数
主要有粘度、蒸汽压、沸程、初馏点、闪点、燃点、流点等。
(6)异丙基联苯分析方法扩展阅读
主要特点
1、在许用温度范围内,热稳定性较好,结焦少,使用寿命较长。
2、在许用温度范围内,导热性能、流动性能及可泵性能良好。
3、低毒无味,不腐蚀设备,对环境影响很小。
4、凝固点较低,沸点较高,低沸点组分含量较少。在许用温度范围内,蒸汽压不高,蒸发损失少。
5、温度高于70℃时,与空气接触会被强烈氧化,其受热工作系统需密封,而只允许其在70℃以下的温度与空气接触。
6、受热后体积膨胀显着,膨胀率远大于水。温升100℃,体积膨胀率可达8%~10%。
❼ 什么是绝缘材料
绝缘材料 : jué yuán cái liào
电工器材中使带电体与其他部分隔离的材料。常用的固态材料有绝缘纸、皮、橡皮、塑料、油漆、玻璃、陶瓷、云母等。常用的液态材料有变压器油等。气态材料中以空气、氮气、六氟化硫等用得较多。
绝缘材料:电阻率为109~1022 Ω•Cm的物质所构成的材料在电工技术上称为绝缘材料,又称电解质。简单的说就是使带电体与其他部分隔离的材料。绝缘材料对直流电流有非常大的阻力,在直流电压作用下,除了有极微小的表面泄漏电流外,实际上几乎是不导电的,而对于交流电流则有电容电流通过,但也认为是不导电的。绝缘材料的电阻率越大,绝缘性能越好。
--------------------------------
绝缘材料
用于使不同电位的导电部分隔离的材料。其电导率约在10-10 西/米以下。不同的电工产品中,根据需要,绝缘材料往往还起着储能、散热、冷却、灭弧、防潮、防霉、防腐蚀、防辐照、机械支承和固定、保护导体等作用。
分类和性能 绝缘材料种类很多,可分气体、液体、固体三大类。常用的气体绝缘材料有空气、氮气、六氟化硫等。液体绝缘材料主要有矿物绝缘油、合成绝缘油(硅油、十二烷基苯、聚异丁烯、异丙基联苯、二芳基乙烷等)两类。固体绝缘材料可分有机、无机两类。有机固体绝缘材料包括绝缘漆、绝缘胶、绝缘纸、绝缘纤维制品、塑料、橡胶、漆布漆管及绝缘浸渍纤维制品、电工用薄膜、复合制品和粘带、电工用层压制品等。无机固体绝缘材料主要有云母、玻璃、陶瓷及其制品。相比之下,固体绝缘材料品种多样,也最为重要。
不同的电工设备对绝缘材料性能的要求各有侧重。高压电工装置如高压电机、高压电缆等用的绝缘材料要求有高的击穿强度和低的介质损耗。低压电器则以机械强度、断裂伸长率、 耐热等级等作为主要要求。
绝缘材料的宏观性能如电性能、热性能、力学性能、耐化学药品、耐气候变化、耐腐蚀等性能与它的化学组成、分子结构等有密切关系。无机固体绝缘材料主要是由硅、硼及多种金属氧化物组成,以离子型结构为主,主要特点为耐热性高,工作温度一般大于180℃,稳定性好,耐大气老化性、耐化学药品性及长期在电场作用下的老化性能好;但脆性高,耐冲击强度低,耐压高而抗张强度低;工艺性差。有机材料一般为聚合物,平均分子量在104~106之间,其耐热性通常低于无机材料。含有芳环、杂环和硅、钛、氟等元素的材料其耐热性则高于一般线链形高分子材料。
影响绝缘材料介电性能的重要因素是分子极性的强弱和极性组分的含量。极性材料的介电常数、介质损耗均高于非极性材料,并且容易吸附杂质离子增加电导而降低其介电性能。故在绝缘材料制造过程中要注意清洁,防止污染。电容器用电介质要求有高的介电常数以提高其比特性。
发展概况 最早使用的绝缘材料为棉布、丝绸、云母、橡胶等天然制品。在20世纪初,工业合成塑料酚醛树脂首先问世,其电性能好,耐热性高。以后又相继出现了性能更好的脲醛树脂、醇酸树脂。三氯联苯合成绝缘油的出现使电力电容器的比特性出现了一次飞跃(但因有害人体健康,后已停止使用)。同期还合成了六氟化硫。
30年代以来人工合成绝缘材料得到了迅速发展,主要有缩醛树脂、氯丁橡胶、聚氯乙烯、丁苯橡胶、聚酰胺、三聚氰胺、聚乙烯及性能优异称之为塑料王的聚四氟乙烯等。这些合成材料的出现,对电工技术的发展起了重大作用。如缩醛漆包线用于电机,使其工作温度和 可靠性提高,而电机的体积和重量大大降低。玻璃纤维及其编织带的研制成功及有机硅树脂的合成又为电机绝缘增加了H级这个耐热等级。
40年代以后不饱和聚酯、环氧树脂问世。粉云母纸的出现使人们摆脱了片云母资源匮乏的困境。
50年代以来,合成树脂为基的新材料得到了广泛应用,如不饱和聚酯和环氧等绝缘胶可供高压电机线圈浸渍用。聚酯系列产品在电机槽衬绝缘、漆包线及浸渍漆中使用,发展了E级和B级低压电机绝缘,使电机的体积和重量进一步下降。六氟化硫开始用于高压电器,并使之向大容量小型化发展。断路器的空气绝缘及变压器的油和纸绝缘部分地被六氟化硫所取代。
60年代含杂环和芳环的耐热树脂得到了大发展,如聚酰亚胺、聚芳酰胺、聚芳砜、聚苯硫醚等属 H级及更高耐热等级的材料。这些耐热材料的合成为以后发展 F级、H级电机创造了有利条件。聚丙烯薄膜在这一时期也成功地用于电力电容器。
70年代以来新材料的开发研究相对比较少,这一时期主要是对现有材料进行各种改性及扩大应用范围。对矿物绝缘油采用新方法精制以降低其损耗;环氧云母绝缘在提高其机械性能和实现无气隙以提高其电性能方面做了很多改进。电力电容器由纸膜复合结构向全膜结构过渡。1000千伏级特高压电力电缆开始研究用合成纸绝缘取代传统的天然纤维纸。无公害绝缘材料70年代以来也发展很快,如以无毒介质异丙基联苯、酯类油取代有毒介质氯化联苯,无溶剂漆的扩大应用等。随着家用电器的普及,其绝缘材料着火而导致重大火灾事故屡有发生,所以对阻燃材料的研究引起了重视。
发展趋势 绝缘材料的研制和开发的水平是影响制约电工技术发展的关键之一。从今后趋势来看,要求发展耐高压、耐热绝缘,无溶剂无公害绝缘,复合绝缘,耐腐蚀、耐水、耐油、耐深冷、耐辐照及阻燃材料,发展节能材料。重点是发展用于高压大容量发电机的环氧云母绝缘体系;中小型电机用的F、H级绝缘系列;高压输变电设备用的六氟化硫气态介质;取代氯化联苯的新型无毒合成介质;高性能绝缘油;合成纸复合绝缘;阻燃性橡塑材料和表面防护材料等,同时要积极加速传统电工设备用绝缘材料的更新换代。
❽ 微量水分测定仪可用于测定哪些物质的水分
微量水分测定仪原理:
试剂溶液是由占优势的碘和充有二氧化硫的吡啶、甲醇等混合而成。卡尔--菲休试剂同水的反应原理是:基于有水时,碘被二氧化硫还原,在吡啶和甲醇存在的情况下,生成氢碘酸吡啶和甲基硫酸氢吡啶。反应式为:
H20+I2+SO2+3C5H5N → 2C5H5N·HI+C5H5N·SO3 …………(1)
C5H5N·SO3+CH3OH → C5H5N·HSO4CH3 …………………(2)
在电解过程中,电极反应如下:
阳极:2I- - 2e → I2 …………………………………(3)
阴极:2H+ + 2e → H2↑…………………………………(4)
阳极产生的碘又与水反应生成氢碘酸,直至全部水分反应完毕为止,反应终点用一对铂电极所组成的检测单元指示。依据法拉第电解定律可知, 参加反应的碘的分子数等于水的分子数,同电荷量成正比例关系。水量与电荷量有如下等式成立:
W=Q/10.722 ……………………………………………(5)
式中:W -- 样品中水分含量 单位:微克
Q -- 电解电量 单位:毫库仑
微量水分测定仪应用行业:
用于食品、生物、制药、化工、纺织、造纸、包装、环保、气体等行业中
❾ 有机物系统命名法是什么
有机化合物的命名—IUPAC 一、链烷烃的命名1. 系统命名法(1)直链烷烃的命名直链烷烃(n�6�1alkanes)的名称用“碳原子数+烷”来表示。当碳原子数为1�6�110时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示。碳原子数超过10时,用数字表示。(2)支链烷烃的命名有分支的烷烃称为支链烷烃。(i)碳原子的级下面化合物中含有四种不同碳原子:① 与一个碳相连的碳原子是一级碳原子,用1�0�8C表示(或称伯碳,primary carbon),1�0�8C上的氢称为一级氢,用1�0�8H表示。② 与两个碳相连的碳原子是二级碳原子,用2�0�8C表示(或称仲碳,secondary carbon),2�0�8C上的氢称为二级氢,用2�0�8H表示。③ 与三个碳相连的碳原子是三级碳原子,用3�0�8C表示(或称叔碳,tertiary carbon),3�0�8C上的氢称为三级氢,用3�0�8H表示。④ 与四个碳相连的碳原子是四级碳原子,用4�0�8C表示(或称季碳,quaternary carbon)(ii)烷基的名称烷烃去掉一个氢原子后剩下的部分称为烷基。英文名称为alkyl,即将烷烃的词尾�6�1ane改为�6�1yl。烷基可以用普通命名法命名,也可以用系统命名法命名。表2列出了一些常见烷基的名称。表2 一些常见烷基的名称烷烃相应的烷基普通命名法IUPAC命名法中文名称(英文名称)中文名称(英文名称)甲烷 CH4甲基(methyl,缩写Me)甲基(methyl,缩写Me)乙烷 CH3CH3乙基(ethyl,缩写Et)乙基(ethyl,缩写Et)丙烷 CH3CH2CH3(正)丙基(n�6�1propyl,缩写n�6�1Pr)丙基(propyl,缩写Pr)异丙基(isopropyl,缩写i�6�1Pr)1�6�1甲基乙基(1�6�1methylethyl)(正)丁烷
CH3(CH2)2CH3(正)丁基(n�6�1butyl,缩写n�6�1Bu)丁基(butyl,缩写Bu)二级丁基或仲丁基(sec�6�1butyl,缩写s�6�1Bu)1�6�1甲(基)丙基(1�6�1methylpropyl)异丁烷
异丁基(isobutyl,缩写i�6�1Bu)2�6�1甲基丙基(2�6�1methylpropyl)三级丁基或叔丁基(tert�6�1butyl,缩写t�6�1Bu)1,1�6�1二甲基乙基(1,1�6�1dimethylethyl)(正)戊烷
CH3(CH2)3CH3(正)戊基(n�6�1pentyl或 n�6�1amyl)戊基(n�6�1pentyl)-1�6�1甲基丁基(1�6�1methylbutyl)-1�6�1乙基丙基(1�6�1ethylpropyl)异戊烷
异戊基(iso�6�1pentyl)3�6�1甲基丁基(3�6�1methylbutyl) -1,2�6�1二甲基丙基(1,2�6�1dimethylpropyl)三级戊基或叔戊基(tert�6�1pentyl)1,1�6�1二甲基丙基(1,1�6�1dimethylpropyl)-2�6�1甲基丁基(2�6�1methybutyl)新戊烷
新戊基(neopentyl)2,2�6�1二甲基丙基(2,2�6�1dimethylpropyl)*1 括号中的正字可以省略;*2 在英文命名时,正用n�6�1,异用iso�6�1或i�6�1,新用neo,二级用词头sec�6�1(或s�6�1),三级用词头tert�6�1(或t�6�1)表示,后面有一短横线。烷基的系统命名方法是:将失去氢原子的碳定位为1,从它出发,选一个最长的链为烷基的主链,从1位碳开始,依次编号,不在主链上的基团均作为主链的取代基处理。写名称时,将主链上的取代基的编号和名称写在主链名称前面。例如:下面的烷基从1号碳出发,有三个编号的方向,选碳原子数最多的方向编号,该碳链为烷基的主链,称为丁基(butyl),在该主链的1位碳上有两个取代基:甲基、乙基。所以该烷基的名称为1�6�1甲基�6�11�6�1乙基丁基。(iii)顺序规则有机化合物中的各种基团可以按一定的规则来排列先后次序,这个规则称为顺序规则,其主要内容如下:① 将单原子取代基按原子序数大小排列,原子序数大的顺序在前,原子序数小的顺序在后,有机化合物中常见的元素顺序如下:I>Br>Cl>S>P>F>O>N>C>D>H在同位素中质量高的顺序在前。② 如果两个多原子基团的第一个原子相同,则比较与它相连的其它原子,比较时,按原子序数排列,先比较最大的,仍相同,再顺序比较居中的、最小的。如�6�1CH2Cl与�6�1CHF2,第一个均为碳原子,再按顺序比较与碳相连的其它原子,在�6�1CH2Cl中为�6�1C(Cl, H, H),在�6�1CHF2中为�6�1C(F, F, H),Cl比F在前,故�6�1CH2Cl在前。如果有些基团仍相同,则沿取代链逐次相比。③ 含有双键或叁键的基团,可认为连有两个或叁个相同的原子,例如下列基团排列顺序为:此外如苯基 ,醛基 ,氰基 等等。④ 若参与比较顺序的原子的键不到4个,则可以补充适量的原子序数为零的假想原子,假想原子的排序放在最后。例如:CH3CH2NHCH3中,N上只有三个基团,则它的第四个基团为一个原子序数为0的假想原子,四个基团的排序为:CH3CH2�6�1>CH3�6�1>H�6�1>假想原子。(iv)名称的基本格式有机化合物系统命名的基本格式如下所示:例如:下面化合物的系统名称:(v)命名原则和命名步骤命名时,首先要确定主链。命名烷烃时,确定主链的原则是:首先考虑链的长短,长的优先。若有两条或多条等长的最长链时,则根据侧链的数目来确定主链,多的优先。若仍无法分出那条链为主链,则依次考虑下面的原则,侧链位次小的优先,各侧链碳原子数多的优先,侧分支少的优先。主链确定后,要根据最低系列原则对主链进行编号。最低系列原则的内容是:使取代基的号码尽可能小,若有多个取代基,逐个比较,直至比出高低为止。最后,根据有机化合物名称的基本格式写出全名。下面是几个实例:实例一:选六碳链为主链。主链有两种编号方向,第一行编号,取代基的位号为2,4,5,第二行编号,取代基的位号为2,3,5(位号用阿拉伯数字1,2,3……表示)。根据最低系列原则,用第二行编号。该化合物的中文名称为2,3,5�6�1三甲基己烷。在名称中,2,3,5分别为三个甲基的位号。“三”是甲基的数目。(在中文名称中,取代基个数用中文数字一、二、三……来表示。在英文名称中,一、二、三、四、五、六数字相应用词头mono、di、tri、tetra、penta、hexa表示。)实例二:本化合物有两根8碳的最长链,因此通过比较侧链数来确定主链。横向长链有四个侧链,弯曲的长链只有二个侧链,多的优先,所以选横向长链为主链。主链有两种编号方向,第一行取代基的位号是4,5,6,7,第二行取代基的位号是2,3,4,5,根据最低系列原则,选第二行编号。该化合物的中文名称是2,3,5�6�1三甲基�6�14�6�1丙基辛烷。。注意本化合物中有两种取代基。当一个化合物中有两种或两种以上的取代基时,中文按顺序规则确定次序,顺序规则中小的基团放在前面。所以甲基放在丙基的前面。英文命名按英文字母的顺序排列。methyl中的m在英文字母顺序中比propyl中的p靠前,所以methyl放在propyl的前面。注意在比较英文字母顺序时,iso(异)、neo(新)要参与比较,而i�6�1(异)、n�6�1(正)、sec(二级)、tert(三级)、cis(顺)、trans(反)、di(二个)、tri(三个),tetra(四个)等不参与比较。实例三:本化合物有两根七碳的最长链,侧链数均为三个,所以根据侧链的位次来决定主链。横向长链的侧链位次为2,4,5,弯曲长链的侧链位次为2,4,6,小的优先,所以横向长链为主链。根据最低系列原则,取主链的第二行编号。本化合物的中文名称为2,5�6�1二甲基�6�14�6�1异丁基庚烷或2,5�6�1二甲基�6�14�6�1(2�6�1甲丙基)庚烷。括号中的“2”是取代烷基上的编号。实例四:本化合物有两个等长的最长链,侧链数均为5,侧链位次均为3, 5,7,9,11。而侧链的碳原子数由小到大排列时,一个主链为1,1,1,2,8,另一个主链为1,1,1,1,9。逐项比较,根据多的优先的原则确定主链。本化合物的中文名称为3,5,9�6�1三甲基�6�111�6�1乙基�6�17�6�1(2,4�6�1二甲基己基)十三烷。实例五:本化合物有两根等长的最长链,两根长链均有两个侧链,侧链位次均为4,5,侧链的碳原子数均为3,7。最后根据侧分支少的优先的原则来确定主链。化合物的中文名称是4�6�1丙基�6�15�6�1(1�6�1异丙基丁基)十一烷。2. 普通命名法普通命名法对直链烷烃的命名与系统命名相同。命名有支链的烷烃时,用正表示无分支,用异表示端基有(CH3)2CH-结构,用新表示端基有(CH3)3CCH2-结构,这与烷基的普通命名法相同。例如戊烷的三个同分异构体的普通命名如下:普通命名法中,工业上常用的异辛烷是一个特例,不符合上述规定。用正、异、新可以区别烷烃中具有五个碳原子以下的同分异构体,但命名多于五个碳原子的烷烃时就有困难了。如六个碳原子的化合物有五个同分异构体,除用正、异、新表示其中的三个化合物外,尚有两个无法加以区别,故此命名法只适用于简单的化合物。3. 衍生物命名法烷烃的衍生物命名法以甲烷为母体,其它部分则作为甲烷的取代基来命名。例如:在衍生物命名法中,为了方便,一般总是选连有烷基最多的碳原子作为甲烷的碳原子。4. 俗名通常是根据来源来命名。例如甲烷产生于池沼里腐烂的植物,所以称为沼气(marsh gas)。二、环烷烃的命名1. R,S构型的确定人的左、右手互为镜影但不能重叠,手的这种性质称为手性(chirality)。当一个碳原子与四个不同的基团相连时,可以产生两种不同的立体结构,这两种不同的立体结构互为镜影但不能重叠,即具有手性,因此与四个不同基团相连的碳原子称为手性碳原子(chral carbon atom)。为了区别因手性碳而引起的两种不同的立体结构,称其中一种立体结构的手性碳为R构型,而另一种立体结构的手性碳为S构型。并规定用如下的方法来确定手性碳的构型:将与手性碳原子相连的四个基团按顺序规则排列大小,将最小的基团放在离眼睛最远的地方,其它三个基团按由大到小的方向旋转,旋转方向是顺时针的,手性碳为R构型(拉丁文rectus的字首);旋转方向是逆时针的,手性碳为S构型(拉丁文sinister的字首)。例如:
图2�6�11 R,S构型的确定2. 环状化合物顺反构型的确定由于成环碳原子的单键不能自由旋转,因此当环上带有两个或多个基团时,就会产生两个或多个立体异构体。一个异构体的两个取代基团在环的同侧称为顺式构型(cis configuration)。另一个异构体的两个取代基在环的异侧,称为反式构型(trans configuration)。例如:3. 单环烷烃的命名只有一个环的环烷烃称为单环烷烃。环上没有取代基的环烷烃命名时只须在相应的烷烃前加环。例如:环上有取代基的单环烷烃命名分两种情况。环上的取代基比较复杂时,应将链作为母体,将环作为取代基,按链烷烃的命名原则和命名方法来命名。例如:而当环上的取代基比较简单时,通常将环作为母体来命名。例如:当环上有两个或多个取代基时,要对母体环进行编号,编号仍遵守最低系列原则。例如:但由于环没有端基,有时会出现有几种编号方式都符号最低系列原则的情况。例如:上面列出了同一个化合物的三种编号方式,它们都符合最低系列原则。也即应用最低系列原则无法确定那一种编号优先。在这种情况下,中文命名时,应让顺序规则中较小的基团位次尽可能小。所以应取(i)的编号,化合物的名称是1,3�6�1二甲基�6�15�6�1乙基环己烷。、当环上带有两个或两个以上取代基时,如分子有反轴对称性,构型用顺反表示,分子没有反轴对称性,构型用R,S表示。例如:
环上带有三个或更多基团时,若用顺、反表示构型,要选用一个参照基团,通常选用1位的基团为参照基团,用r�6�11表示,放在名称的最前面。例如: 4桥环烷烃的命名桥环烷烃(bridged hydrocarbon)是指共用两个或两个以上碳原子的多环烷烃,共用的碳原子称为桥头碳(bridgehead carbon),两个桥头碳之间可以是碳链,也可以是一个键,称为桥。将桥环烃变为链形化合物时,要断裂碳链,如需断两次的桥环烃称为二环(bicyclo),断三次的称三环(tricyclo)等等,然后将桥头碳之间的碳原子数(不包括桥头碳)由多到少顺序列在方括号内,数字之间在右下角用圆点隔开,最后写上包括桥头碳在内的桥环烃碳原子总数的烷烃的名称。如桥环烃上有取代基,则列在整个名称的前面,桥环烃的编号是从第一个桥头碳开始,从最长的桥编到第二个桥头碳,再沿次长的桥回到第一个桥头碳,再按桥渐短的次序将其余的桥编号,如编号可以选择,则使取代基的位号尽可能最小:如上式三环烃中,在2,6位中间无碳原子,因此用零表示,在零的右上角标明位号,位号中间用逗号隔开。对于一些结构复杂的桥环烷烃,常用俗名。5 螺环烷烃的命名螺环烷烃(spirocyclic hydrocarbon)是指单环之间共用一个碳原子的多环烃,共用的碳原子称为螺原子(spiro atom)。螺环的编号是从螺原子上的小环开始顺序编号,由第一个环顺序编到第二个环,命名时先写词头螺,再在方括号内按编号顺序写出除螺原子外的环碳原子数,数字之间用圆点隔开,最后写出包括螺原子在内的碳原子数的烷烃名称,如有取代基,在编号时应使取代基位号最小,取代基位号及名称列在整个名称的最前面:螺[5.5]十一烷分子对称,可合并命名,称为螺[二环己烷] 三、烯烃和炔烃的命名1. 烯基、亚基和炔基(1)烯基烯烃去掉一个氢原子,称为某烯基(�6�1enyl)。烯基的编号从带有自由价(free valence)的碳原子开始,烯基的英文名称用词尾“enyl”代替基的词尾“yl”。下面是三个烯基的普通命名法和IUPAC命名法。(2). 亚基有两个自由价的基称为亚基,有两种类型。例如:中文命名要在名称前标上两个自由价原子的相对位置。例如:以上两种亚基的名称在普通命名法和IUPAC命名中均适用。(3) 炔基炔烃去掉一个氢原子即得炔基,如:2 烯烃和炔烃的系统命名(1)单烯烃和单炔烃的系统命名单烯烃的系统命名可按下列步骤进行:(i)先找出含双键的最长碳链,把它作为主链,并按主链中所含碳原子数把该化合物命名为某烯。如主链含有四个碳原子,即叫做丁烯。十个碳以上用汉字数字,再加上碳字,如十二碳烯。(ii)从主链靠近双键的一端开始,依次将主链的碳原子编号,使双键的碳原子编号较小。(iii)把双键碳原子的最小编号写在烯的名称的前面。取代基所在碳原子的编号写在取代基之前,取代基也写在某烯之前。(iv)若分子中两个双键碳原子均与不同的基团相连,这时会产生两个立体异构体,可以采用Z、E构型来标示这两个立体异构体。即按顺序规则,两个双键碳原子上的两个顺序在前的原子(或基团)同在双键一侧的为Z构型(Z configuration)(德文,Zusammen,在一起的意思),在两侧的为E构型(E configuration)(德文,Entgegen,相反的意思)。在采用Z、E标示双键构型以前,曾采用顺、反来标示双键的构型,规定连在两个双键碳原子上的相同或相似的基团处于双键同侧称为顺,处在双键异侧称为反。由于该法在判断相似基团时会出现一些混淆,现在大都采用Z、E构型标示。(v)按名称格式写出全名。英文命名时将某烷的词尾ane改为ene,即为某烯的名称。分析两个实例:分子中只有一个官能团:碳碳双键。选含碳碳双键的最长链为主链。由于双键处于链的中间,因此无论从左向右编号还是从右向左编号,双键的位置号均为4。在无法根据官能团的位置号来确定编号方向时,应让取代基的位号尽可能小,所以采用自右向左的编号方式。本化合物的碳3是手性碳,其构型为S,分子中的碳碳双键为Z构型。因此本化合物的中文名称是(3S,4Z)�6�13�6�1甲基�6�14�6�1辛烯。英文名称是(3S,4Z)�6�13�6�1methyl�6�14�6�1octene。ene是烯烃名称的词尾。该化合物的双键在环中,所以母体是环己烯。编号时,首先要使官能团的位号尽可能小,所以环中,主官能团的位号为1。其次,要使取代基的位置号也尽可能小,因此,本题按逆时针方向编号。分子中的碳3为手性碳,但因结构式中未明确标明构型,所以命名时不涉及。本化合物的中文名称是3�6�1(2�6�1甲基丙基)环己烯或3�6�1异丁基环烯。下面是几个命名的实例:
从上面的命名中可以看到,顺、反与Z、E在命名时并不完全一致,即顺型不一定是Z构型,反型也不一定是E构型。单炔烃的系统命名方法与单烯烃相同,但不存在确定Z、E构型的问题。(2) 多烯烃或多炔烃的系统命名多烯烃的系统命名按下列步骤进行。(i)取含双键最多的最长碳链作为主链,称为某几稀,这是该化合物的母体名称。主链碳原子的编号,从离双键较近的一端开始,双键的位置由小到大排列,写在母体名称前,并用一短线相连。(ii)取代基的位置由与它连接的主链上的碳原子的位次确定,写在取代基的名称前,用一短线与取代基的名称相连。(iii)写名称时,取代基在前,母体在后,如果是顺、反异构体,则要在整个名称前标明双键的Z、E构型。例如:
多炔烃的系统命名方法与多烯烃相同。二炔烃的英文名称以adiyne为词尾,代替相应烃的词尾ane。(3) 烯炔的系统命名若分子中同时含有双键与叁键,可用烯炔作词尾,给双键、叁键以尽可能低的编号,如果位号有选择时,使双键位号比叁键小,书写时先烯后炔:3 烯烃和炔烃的其它命名法(1). 烯烃的普通命名法烯烃的普通命名法和烷烃的普通命名法类似,用正、异等词头来区别不同的碳架。该法只适用于简单烯烃。例如: (2). 烯烃的俗名某些复杂的天然产物,含有多个共轭双键(conjugated double bond),如胡卜素及维生素A等,这些化合物一般都用俗名命名。如:(3) 炔烃的衍生物命名简单的炔烃可作为乙炔(acetylene)的衍生物来命名。例如:四、芳香烃的命名1 含苯基的单环芳烃的命名最简单的此类单环芳烃是苯(benzene)。其它的这类单环芳烃可以看作是苯的一元或多元烃基的取代物。苯的一元烃基取代物只有一种。命名的方法有两种,一种是将苯作为母体。烃基作为取代基,称为××苯。另一种是将苯作为取代基,称为苯基(phenyl),它是苯分子减去一个氢原子后剩下的基团,可简写成ph�6�1,苯环以外的部分作为母体,称为苯(基)××。例如:苯的二元烃基取代物有三种异构体,它们是由于取代基团在苯环上的相对位置的不同而引起的,命名时用邻或o(ortho)表示两个取代基处于邻位,用间或m(meta)表示两个取代基团处于中间相隔一个碳原子的两个碳上,用对或p(para)表示两个取代基团处于对角位置,邻、间、对也可用1,2�6�1、1,3�6�1、1,4�6�1表示。例如:
若苯环上有三个相同的取代基,常用“连”为词头,表示三个基团处在1,2,3位。用“偏”为词头,表示三个基团处在1,2,4位。用“均”为词头,表示三个基团处在1,3,5位。例如:当苯环上有两个或多个取代基时,苯环上的编号应符合最低系列原则。而当应用最低系列原则无法确定那一种编号优先时,与单环烷烃的情况一样,中文命名时应让顺序规则中较小的基团位次尽可能小。例如:除苯外,下面六个芳香烃的俗名也可作为母体化合物的名称。而其它芳烃化合物可看作它们的衍生物。例如: 2多环芳烃的命名分子中含有多个苯环的烃称为多环芳烃。主要有多苯代脂烃、联苯(biphenyl)和稠合多环芳烃。(1) 多苯代脂烃的命名链烃分子中的氢被两个或多个苯基取代的化合物称为多苯代脂烃。命名时,一般是将苯基作为取代基,链烃作为母体。例如:(2)联苯型化合物的命名两个或多个苯环以单键直接相连的化合物称为联苯型化合物。例如:联苯类化合物的编号总是从苯环和单键的直接连接处开始,第二个苯环上的号码分别加上(’)符号,第三个苯环上的号码分别加上“’’”符号,其它依次类推。苯环上如有取代基,编号的方向应使取代基位置尽可能小,命名时以联苯为母体。例如: (3)稠环芳烃的命名两个或多个苯环共用两个邻位碳原子的化合物称为稠环芳烃。最简单最重要的稠环芳烃是萘、蒽、菲。萘、蒽、菲的编号都是固定的,如上所示。萘分子的1,4,5,8位是等同的位置,称为α位,2,3,6,7位也是等同的位置,称为β位。蒽分子的1,4,5,8位等同,也称为α位,2,3,6,7位等同,也称为β位,9,10位等同,称为γ位。菲有五对等同的位置,它们分别是:1,8,2,7,3,6,4,5和9,10。取代稠环芳烃的名称格式与有机化合物名称的基本格式一致。例如:
❿ 如何选择微量水分测定仪厂家可测定哪些物质的水分
华天电力生产的微量水分测定仪,采用一个微型企业计算机进行控制,彩色大屏幕液晶中文菜单显示,人机对话更直观,操作更简便,与同类仪器技术相比,大大提高了系统测试方法灵敏度。分析速度,精度高,自动计算出百分比,ppm的含量,水分含量,以及自动打印,设备故障自诊断,长期存储等功能的测量结果。是率全自动的分析主要仪器。
微水测量仪可用于测定各种有机和无机物质中的水。 由于各种化合物性质的不同,可分为两类:可直接测定,不可直接测定..典型是下列物质。
1.碳氢有机化合物 戊烷、己烷、二甲基丁烷、甲基化为丁二烯、苯、甲苯、二甲苯、乙基氧化甲苯、二甲基苯乙烯、辛烷、十二烷、十四烯、二十碳烷、二十八烷、石油醚、汽油、环己胺、甲基环己胺、环庚烷、乙烯环己胺、环十二烷、癸基环己烷、二环戊二烯、二甲基萘、三甲基通过苯乙烯、联苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等等。
2.油液压油,绝缘油,变压器油,透平油
3.醇类 一元醇,多元醇,酚(全部)
4.卤代烃类(全部)
5.苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基苯酚等
6.脂类(全部)
7.乙醚二乙醚、二甘醇一甲醚、二甘醇二乙醚、聚乙醚、苄醚、氟苯醚、碘苯醚,二癸醚,二庚醚
8.酸 羧酸,羧基酸,氨基酸,磺酸
9.酸酐和酰卤 乙酸酐,苯甲酰氯
10.硫化物含硫化合物,硫氰酸盐,硫醚,磺黄原酸酯,二硫代氨基甲酸脂
华天电力生产的微量水分测定仪,是您值得信赖的选择,欢迎各位电力工作者咨询。