导航:首页 > 研究方法 > 周期载荷曲线分析方法

周期载荷曲线分析方法

发布时间:2022-06-15 12:55:32

A. 周期信号怎么进行频谱分析

如果是周期信号进行频谱分析很简单,取出一个完整的周期进行奈奎斯特采样,采样信号再进行一次快速傅里叶变换就得到了周期信号频谱。

B. 疲劳强度的理论分析

疲劳的机制可以分成三个相互关联的过程:
1. 裂纹产生
2. 裂纹延伸
3. 断裂
FEA应力分析可以预测裂纹的产生。许多其他技术,包括动态非线性有限元分析可以研究与裂纹的延伸相关的应变问题。由于设计工程师最希望从一开始就防止疲劳裂纹的出现,确定材料的疲劳强度。
裂纹开始出现的时间以及裂纹增长到足以导致零部件失效的时间由下面两个主要因素决定:零部件的材料和应力场。材料疲劳测试方法可以追溯到19 世纪,由August Wöhler 第一次系统地提出并进行了疲劳研究。标准实验室测试采用周期性载荷,例如旋转弯曲、悬臂弯曲、轴向推拉以及扭转循环。科学家和工程师将通过此类测试获得的数据绘制到图表上,得出每类应力与导致失效的周期重复次数之间的关系,或称S-N曲线。工程师可以从S-N 曲线中得出在特定周期数下材料可以承受的应力水平。
该曲线分为高周疲劳和低周疲劳两个部分。一般来说,低周疲劳发生在10,000 个周期之内。曲线的形状取决于所测试材料的类型。某些材料,例如低碳钢,在特定应力水平(称为耐疲劳度或疲劳极限)下的曲线比较平缓。不含铁的材料没有耐疲劳度极限。
大体来说,只要在设计中注意应用应力不超过已知的耐疲劳度极限,零部件一般不会在工作中出现失效。但是,耐疲劳度极限的计算不能解决可能导致局部应力集中的问题,即应力水平看起来在正常的“安全”极限以内,但仍可能导致裂纹的问题。
与通过旋转弯曲测试确定的结果相同,疲劳载荷历史可以提供关于平均应力和交替应力的信息。测试显示,裂纹延伸的速度与载荷周期和载荷平均应力的应力比率有关。裂纹仅在张力载荷下才会延伸。因此,即使载荷周期在裂纹区域产生压缩应力,也不会导致更大的损坏。但是,如果平均应力显示整个应力周期都是张力,则整个周期都会导致损坏。
许多工况载荷历史中都会有非零的平均应力。人们发明了三种平均应力修正方法,可以省去必须在不同平均应力下进行疲劳测试的麻烦:
Goodman 方法- 通常适用于脆性材料。
Gerber 方法- 通常适用于韧性材料。
Soderberg 方法- 通常最保守。
这三种方法都只能应用于所有相关联的S-N 曲线都基于完全反转载荷的情况。而且,只有所应用疲劳载荷周期的平均应力与应力范围相比很大时,修正才有意义。实验数据显示,失效判据位于Goodman 曲线和Gerber 曲线之间。这样,就需要一种实用的方法基于这两种方法并使用最保守的结果来计算失效。
疲劳寿命的计算方法
对每个设计进行物理测试明显是不现实的。在多数应用中,疲劳安全寿命设计需要预测零部件的疲劳寿命,从而确定预测的工况载荷和材料。计算机辅助工程(CAE) 程序使用三种主要方法确定总体疲劳寿命。这些方法是:
·应力寿命方法(SN)
这种方法仅基于应力水平,只使用Wöhler 方法。尽管不适用于包含塑性部位的零部件,低周疲劳的精确度也乏善可陈,但这种方法最容易实施,有丰富的数据可供使用,并且在高周疲劳中有良好的效果。
· 应变寿命(EN)
这种方法可以对局部区域的塑性变形进行更详细的分析,非常适合低周疲劳应用。但是,结果存在一些不确性。
· 线性弹性破坏力学(LEFM)
这种方法假设裂缝已经存在并且被检测到,然后根据应力强度预测裂缝的增长。借助计算机代码和定期检查,这种方法对大型结构很实用。由于易于实施并且有大量的材料数据可用,SN 是最常用的方法。
设计人员使用SN 方法计算疲劳寿命
在计算疲劳寿命时,应考虑等幅载荷和变幅载荷。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。
其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。
而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
在真实的环境条件下,多数零部件承载的载荷历史是不断变化的,幅度和平均应力都是如此。因此,更为通用和现实的方法需要考虑变幅载荷,在这种情况下,应力尽管随着时间循环反复,但其幅度是变化的,这就有可能将应力分解成载荷“块”。在处理这种类型的载荷时,工程师使用一种称为“雨流法计数”的技术。附录B 讨论如何研究FEA 疲劳结果,它就雨流法计数提供了更多信息。
在通过SN 方法研究疲劳方面,FEA 提供了一些非常优秀的工具,这是因为输入由线弹性应力场组成,并且FEA 能够处理多种载荷情况交互作用的可能情形。如果要计算最坏情况的载荷环境(这是一种典型方法),系统可以提供大量不同的疲劳计算结果,包括寿命周期图、破坏图以及安全系数图。此外,FEA 可以提供较小主要交替应力除以较大主要交替应力的比率的图解(称为双轴性指示图),以及雨流矩阵图。后者是一个3D 直方图,其中的X 和Y 轴代表交替应力和平均应力,Z 轴代表每个箱所计的周期数。

C. 横坐标为时间,纵坐标为载荷大小的曲线如何分析

!EX8.5 端部受集中力的悬臂梁几何非线性分析
finish
/clear
/prep7
ee=207e3
b=10
h=10
lcd=300
aa=b*h
iz=b*h*h*h/12
phz=ee*iz/lcd/lcd
et,1,beam3
mp,ex,1,ee
mp,prxy,1,0.3
r,1,aa,iz,h
k,1
k,2,lcd
l,1,2
lesize,all,,,10
lmesh,all
finish
/solu
dk,1,all
antype,0
!打开大位移开关
nlgeom,1
nsubst,20
outres,all,all
!荷载步
*do,i,1,10
fk,2,fy,-i*phz
!time的值被指定跟此步的荷载一样大
time,i*phz
solve
*enddo
/post26
!定义变量X2,X3
!X1默认为时间变量
nsol,2,2,u,y
nsol,3,2,u,x
! prod在此处用于将变量反号,然后赋给新的变量X4=-X2,X5=-X3
prod,4,2,,,,,,-1
prod,5,3,,,,,,-1
!将变量x4定义为x坐标上
xvar,4
!变量X1定义为对应的y坐标上,此处因为x1为时间的变量
!而时间的变量由TIME命令指定,因为指定的时间变量跟荷载是一样大的,所以此处Y坐标其实是荷载值。
plvar,1
!将变量x5定义为x坐标上
xvar,5
plvar,1

D. 载荷性能指标及影响因素分析

随着遥感成像技术的不断发展,星载遥感器系统变得越来越复杂,正向着具有更高空间分辨率、光谱分辨率和辐射分辨率的方向发展,特别是高光谱遥感技术的出现,其数据质量和产品真实性受载荷技术指标、平台参数、辐射传输过程及各种检测/分类算法等多种因素的影响。而目前的成像系统设计都综合考虑在成本、研制周期及降低风险的限制下获得最优的数据质量。因此,星载高光谱遥感器的设计、评价和遥感任务预测面临一系列的挑战。我国已经将星载高光谱成像仪立项,高光谱遥感图像作为一种产品,对其质量的评价,必将随着高光谱遥感图像应用的进一步深入而引起越来越多的关注;此外,我国发射的卫星载荷普遍存在上星后载荷性能退化严重等问题,影响了载荷数据的有效应用。如何在上星前将载荷设计、应用潜力预测和评价相结合,获得高质量且满足应用部门需求的遥感数据是当前高光谱遥感应用亟待解决的关键技术之一。

针对影响高光谱数据质量的各种因素,从辐射质量要素、几何质量要素、光谱质量要素等方面展开详细的分析与研究;针对各个要素包含指标的释义、模型、影响环节等展开了详细的分析与总结,为后续高光谱数据质量与应用能力评价模型的建立奠定了良好的技术基础。

2.4.1 辐射质量要素

2.4.1.1 辐射定标精度

(1)说明/释义

辐射定标包括相对辐射定标与绝对辐射定标。相对定标精度即(提升)遥感探测器元件归一化的精度,目的是为了校正遥感器中各个探测器元件响应度的差异,对遥感器测量到的原始数字值进行归一化处理,相对定标精度由相对定标过程中的各种参数测量、计算产生的不确定度得到;绝对辐射定标是建立遥感器记录的数字信号与相应的辐射能量之间对应关系的模型。定标精度指的是绝对定标过程中各种参数测量产生的不确定度。

相对定标精度计算如下:

高光谱遥感技术原理及矿产与能源勘查应用

式中:DNcal-i为相对定标后的探测元件数字值;DNraw-i为原始探测器元件采集的数字值;Bi 为第i个探测元件归一化后的偏置值,即归一化的暗电流;NG i 为第i个探测元件归一化后的增益值。

高光谱遥感技术原理及矿产与能源勘查应用

式中:ε相对定标为相对定标精度;ε1,ε2,…,εn为n个不确定度/误差。

绝对定标精度计算如下:

Rad = A·DN + B (2.6)

式中:Rad为辐亮度;A为增益系数;B为偏置;DN为仪器记录的数字值。

高光谱遥感技术原理及矿产与能源勘查应用

式中:ε绝对定标为不确定度平方和的根;ε1,ε2,…,εn为测量过程中的各不确定度。

(2)影响因素

影响相对定标精度的因素包括:地物反射特性的均一性与稳定性、大气的吸收与散射、平台的稳定度与指向精度、探测器响应特性、地面平坦度、成像区域覆盖范围、太阳高度角、地物均值与方差的估计、区域选择等。

影响绝对定标精度的因素包括:大气光学厚度计算与测量误差、地面反射率测量误差、地物BRDF特性分析与测量、大气模式/大气吸收与垂直分布、探测器的响应特性(灵敏度、稳定性、均匀性等)、地表朗伯特性、定标环境、测量方法的不确定性等。

2.4.1.2 动态范围

(1)说明/释义

传感器的动态范围是指传感器可以线性响应的入射辐亮度范围,即遥感器的探测器件从线性输出开始到达饱和的响应范围。理想的遥感器系统应该是线性的,探测器线性响应区的下限由噪声水平等决定,上限与探测器的阱深相对应。

[DNmin,DNmax]或[Rmin,Rmax]即为动态范围。

(2)影响因素

影响探测器的因素包括暗电流/低电平、阱深、响应函数等。动态范围一般通过在图像中找到明暗两种目标,然后根据定标系数与原始图像数据,计算两类明暗目标的反照率/辐亮度,然后外推得到当图像饱和时图像数据目标的反照度/辐亮度。因此,定标精度和明暗目标辐亮度的计算、拟合、外推方法也是影响动态范围估计的主要因素。

2.4.1.3 信噪比

(1)说明/释义

信噪比是指输出信号与噪声的电压比值或输出信号与噪声的功率比值。当利用图像进行信噪比估计时,采用图像均值与方差的比值进行SNR估计。SNR计算方法主要包含以下两种方法:

A:

高光谱遥感技术原理及矿产与能源勘查应用

式中:B(λ)为入射的光谱辐亮度(已转换为电子数);

为散粒噪声方差;

为定标噪声方差;

为读出噪声方差;

为量化噪声方差。

B:

SNR=mean/std (2.9)

式中:mean为图像均值;std为图像标准差。

(2)影响因素

影响系统SNR的主要因素为目标地物反射特性、大气透过率、能见度、光学系统透过率、衍射效率、探测器积分时间、量子效率、太阳高度角等。一般情况下,利用图像进行SNR估计的主要方法如下:选择均匀地物场景的图像进行均值与方差的计算得到SNR;也可以在同一地区选择地物反射特性类似的区域多次成像(成像时间接近),取多个SNR的平均值;也可以用该方法估计不同地区、不同地物、不同观测条件下的SNR。因此,估计方法选取、区域选取等也是影响系统 SNR 的主要因素。

2.4.2 几何质量要素

2.4.2.1 调制传递函数

(1)说明/释义

调制传递函数反映遥感器(或图像)的光学对比度与空间频率的关系,是成像系统对所观察景物再现能力的度量。把成像物体看作是由各种空间频率组成的谱的形式,频率大小不同的成分经过成像系统调制后的下降程度也不同,描述各个空间频率调制度下降程度的函数称为调制传递函数(MTF)。从图像上可以利用点扩散函数/线扩散函数/边缘调制度等实现MTF的检测。

计算公式如下:

MTF =图像的调制度 /目标的调制度 = Mi /M (2.10)

(2)影响因素

MTF主要影响因素包括:大气的光学湍流效应、气溶胶等散射;探测器单元尺寸、电子学的结构与工作方式、光学系统结构与性能、平台的运动与振动、探测器的采样、量化、衍射效率、探测器像元配准精度;观测距离/观路径长度;处理方法/MTF检测方法

2.4.2.2 空间分辨率

(1)说明/释义

光学遥感系统的空间分辨率是指与探测器单元对应的最小地面尺寸,地面分辨率(GSD)描述遥感器能区分两个相邻目标地物之间的最小距离,即遥感器单个探元所对应的地面投影尺寸。

计算公式如下:

高光谱遥感技术原理及矿产与能源勘查应用

式中:a为探元尺寸;H为卫星轨道高度;f为遥感器焦距。

(2)影响因素

影响因素主要包括:大气点扩散函数、探测器器件尺寸及性能、卫星平台高度、观测角度地形起伏。

2.4.3 光谱质量要素

2.4.3.1 光谱中心波长位置

(1)说明/释义

光谱中心波长位置是指某一光谱通道上,光谱响应函数峰值所对应的光谱波长位置,单位一般为nm,μm。

计算公式如下:

λ = λ0{λ0maxf(λ)}(2.12)

(2)影响因素

研制阶段:光栅分光器件的光栅常数、闪耀级次、闪耀波长及衍射角(光栅分光器件性能)、狭缝宽度,探测器单元尺寸与响应灵敏度、光机结构、光学系统成像质量、仪器噪声水平、光谱响应函数测量仪器与环境性能等。

在轨阶段:系统分光器件性能衰减、探测器与分光器件结构变化、大气廓线临边测量的准确性或选择的地物矿物光谱特征的稳定性,光谱定标精度或光谱定标过程中的不确定性。

数据处理阶段:光谱响应函数拟合策略与光谱中心波长估算方法。

2.4.3.2 光谱分辨率(波段光谱响应)

(1)说明/释义

光谱曲线上能够区分开的两个相邻波长的最小光谱间隔,其单位和波长的单位一致,一般为nm,μm。通常采用半高宽表征光谱分辨率。

计算公式如下:

Δλ = λ21 (2.13)

式中:λ2 ,λ1 分别对应波段光谱响应下降到光谱最大响应值的50% 时的波长位置/大小。

(2)影响因素

研制阶段:光栅分光器件的光栅常数、闪耀级次、闪耀波长及衍射角(光栅分光器件性能)、狭缝宽度、探测器单元尺寸与响应灵敏度、光机结构、光学系统成像质量、仪器噪声水平、光谱响应函数测量仪器与环境等。对于干涉型高光谱成像仪,两个干涉光束间的最大光程差对光谱分辨率具有决定性的作用。

在轨阶段:系统分光器件的性能衰减、探测器与分光器件结构变化、大气廓线临边测量的准确性或选择地物矿物光谱特征的稳定性。

数据处理阶段:光谱响应函数拟合策略与光谱分辨率计算方法。

阅读全文

与周期载荷曲线分析方法相关的资料

热点内容
地下水高锰酸钾指数测量方法 浏览:337
纤维桩使用方法 浏览:691
贵州点光源安装方法 浏览:814
化学镀方法和技巧 浏览:497
宝宝怎么治疗最好的方法 浏览:463
csgo连入专属服务器失败解决方法 浏览:944
溶液酸碱性计算方法 浏览:210
战马贴膜的正确方法 浏览:179
复印机安装与操作方法 浏览:25
概率中的个数计算方法 浏览:832
金帅洗衣机使用方法 浏览:659
怎么选择桩的施工方法 浏览:598
联想笔记本限速在哪里设置方法 浏览:493
怎样快速止牙痛土方法 浏览:60
子宫肌层2mm治疗方法 浏览:800
波纹排水管安装方法 浏览:258
华为网络密码在哪里设置方法 浏览:1012
含羞草如何种植方法 浏览:359
小米note微信视频在哪里设置方法 浏览:853
在家制作红枣糕的简单方法 浏览:425