‘壹’ 英语翻译 封闭剂中镍含量测定分析方法的探讨
Nickel content determination of blocker analysis methods are discussed
‘贰’ 测定可乐中咖啡因的含量方法
啡因是一种具有药理活性的物质,在通常的饮料如咖啡、茶和可乐饮料,以及头痛药、止疼药中都发现有咖啡因的存在[1]。适量食用咖啡因有祛除疲劳、兴奋神经等作用,临床上用于神经衰弱、伤风、偏头痛等疾病的治疗[2],但大量或长期摄取咖啡因有损人体的健康,如咖啡因自身的毒性,引发心脏病,对人体骨骼状况及钙平衡产生不利影响等;特别是妇女和儿童更加需要在医生指导的咖啡因摄取含量范围内食用。当前,各种可乐饮料已经成为人们饮食当中摄取咖啡因次数和频率较高的一个重要来源。因此,发展简便、快速、可靠、分析成本低的分析方法来对可乐饮料中咖啡因含量进行测定非常重要。通常采用色谱、色谱/质谱联用、毛细管电泳、分光光度和流动注射等分析方法检测可乐饮料中的咖啡因[3~8]。但是这些方法往往存在有机溶剂消耗多,分析时间长,分析成本相对较高等缺点。紫外光谱分析法因其价格低廉在早期应用比较广泛,但是早期的紫外光谱分析方法往往产生比较明显的正误差[9]。后来研究者们发展了一阶,二阶导数紫外光谱等背景校正方法应用到咖啡因的分析当中。离心萃取目前多用于咖啡因工业生产中[10,11],通过离心实现两相的混合和分离,分相迅速,传质平衡速度快。本实验采用紫外光谱分析方法通过简单的背景校正和微型化的样品前处理,建立了一种快速、准确、价格低廉、溶剂消耗少的测定可乐饮料中咖啡因含量的分析方法,并将大相比离心萃取应用于仪器分析样品制备过程,取得了满意的结果
‘叁’ 提取植物叶片中的水杨酸及测定其含量的方法
一般采用柳树,杨树,冬青树皮或猕猴桃果实等来提,当然杨柳科的树叶中水杨酸含量也是很高的。
测定含量:
主要仪器:Beckman高效液相色谱仪,岛津荧光检测器,Heidolp旋转蒸发仪。SA标准品,上海五联化工厂生产;甲醇为色谱纯,天津市四友生物医学技术有限公司生产;其余所用试剂均为分析纯;水(二次蒸馏水,自制)。
HPLC检测条件:Cl8柱,7.3mm~20cm;流动相: 甲醇:乙酸缓冲液(pH3.2)=50:50;岛津荧光检测器(激发波长为310nm,发射波长为415nm);流速为1.0mIMmin;进样量为201xL。
提取:
水杨酸可由苯酚与氢氧化钠反应生成苯酚钠,蒸馏脱水后,通二氧化碳进行羧基化反应,制得水杨酸钠盐,再用硫酸酸化,而得粗品。粗品经升华精制得成品。
其制备方法是由苯酚钠盐与二氧化碳羧基化后再经酸化而得。用苯酚及液体烧碱制成苯酚钠盐溶液,真空干燥,然后于100℃下慢慢通入干燥的二氧化碳,当压力达到0.7~0.8MPa时,停止通二氧化碳,升温至140~180℃。
(3)中含量测定方法研究扩展阅读:
水杨酸在某些弱酸性电解液中作为添加剂,也可用作电镀或化学镀的络合剂。化妆品防腐剂。主要用于花露水、痱子水、奎宁头水等水类化妆品。除防腐杀菌作用外,还有祛除汗臭、止痒消肿、止痛消炎等功能。
主要作为医药工业的原料,用于制备阿司匹林、水杨酸钠、水杨酰胺、止痛灵、水杨酸苯酯、血防-67等药物。染料工业用于制备媒染纯黄、直接棕3GN、酸性铬黄等。还用作橡胶硫化延缓剂和消毒防腐剂等。
用作环氧树脂固化的促进剂,也可作为防腐剂。可用来制备水杨酸甲酯、水杨酸乙酯等合成香料。染料工业用作制备直接染料及酸性染料等的原料。还可用作橡胶防焦剂、消毒剂等。
‘肆’ 如何得知USP中含量和杂质测定方法是用的UPLC还是HPLC
以分离分析化妆品中对羟基苯甲酸酯类防腐剂为内容,对HPLC和UPLC的色谱条件转换方法进行了研究。比较了采取不同方法转换得到的色谱条件参数的分离状况,选出了U...
‘伍’ 土壤中水分含量的测定方法及各方法的优缺点
最简单、最常用的就是失重法。即取一定量的土样准确称重M,然后将土样烘干至恒重[恒重的判定法则:前后两次烘干后的重量相等,即保持恒定不变]时,减少的重量就是水分的重量W,含水量=W/M×100%。
土壤水分的测定方法
(1) 烘干法(失重法)
烘干法是测量土壤水分的是最普遍的方法,也是标准方法,它用来测定土壤质量含水量。通常将从野外取来的原状土柱中称出已知重量的潮湿土壤样品,放在温度105℃的烘箱中烘干后再称重。加热而失去的水分代表潮湿样品中的土壤水分。
(2) 电阻法
电阻法是利用某些多孔性物质如石膏、尼龙、玻璃纤维等的电阻和它们的含水量有关系这一事实而采用的一种方法。当这些嵌有电极的块状组件放置在潮湿的土壤中时,它们吸收土壤水分一直达到平衡状态。块状组件的电阻由它们的含水量决定的,并依次由附近土壤水分张力或的吸力所决定。电阻读数和土壤水分百分数之间的关系可以用标定方法(calibration)来确定。这些块状组件在一段时间内用来测定田间选定位置的含水量。在1~15大气压吸力范围内它们给出相当准确的水分读数。
(3) 中子散射(neutron scattering)
中子散射法是测定野外土壤水分的独特方法。中子水分计的有效性是基于这一原则,即氢在急剧减低快中子的速度并把它们散射开的能力方面是比较独特的。在图6-3中说明了中子水分计的原理。中子水分计虽然昂贵,但是它具有多方面的优点,并且能相当准确地测定矿质土壤中作为化合氢的主要来源的水的含量。这一方法对于有机质土壤有明显的限制,因为有机质中许多化合氢是以水以外的其他形式存在。此外它不适宜测定表层0-15厘米的土壤水含量。
(4) TDR法
TDR法是20世纪80年代初发展起来的一种测定方法它首先发现可用于土壤容积含水量的测定,继而又发现其可用于土壤含盐量的测定。TDR英文全称是Time-Domain-Reflectometry,简写为TDR,中文译为时域反射仪。TDR法在国外已较普遍使用,在国内也有些研究机构开始引进和开发TDR。
TDR系统类似一个短波雷达系统,可以直接、快速、方便、实地监测土壤水盐状况,与其它测定方法相比,TDR具有较强的独立性,测定结果几乎与土壤类型、密度、温度等无关。将TDR技术应用于结冰条件下土壤水分状况的测定,可得到满意的结果,而其它测定方法则是比较困难的。TDR另一个特点是可同时监测土壤水盐含量,在同一地点同时测定,测定结果具有一致性。而二者测定是完全独立的,互不影响。
‘陆’ 钙制剂中钙含量的测定
【摘要】 对EDTA测定Ca2+的不同方法进行了实验比较,并从溶液配制、所用指示剂、氢氧化钠加入量等方面进行了深入讨论,完善和优化了EDTA测定Ca2+的实验测定方法。该法适用于锂钙质量比≤1的天然水、地下水和卤水样品中钙的容量法测定。
【关键词】 容量法;EDTA;钙;钙指示剂
在天然地表水、地下水和油气田水中,通常含有丰富的Ca2+,其含量测定一般常采用EDTA容量法测定。但已有的文献中关于EDTA络合滴定法测定Ca2+的方法,存在着一定的差异。本文主要从溶液配制、所用指示剂、加碱量(pH值)等三个方面,对不同的实验方法进行了对比研究。以该法结果在滴定分析允许的0.3%相对误差范围内,且更便于观察和易于应用为前提,完善和优化了EDTA容量法测定钙的实验方法。
1 实验部分
1.1 试剂和溶液
钙标准溶液1,2:基准CaCO3(天津市光复精细化工研究所,批号:20050531)在烘箱中180℃灼烧4 h,取出置于干燥器中。冷却至室温后,准确称取4.993 9、2.503 9 g,用二次蒸馏水分别转入1 000、500 mL容量瓶中,摇匀,放置一昼夜,稀释至刻度,Ca2+含量分别为1.999 7、2.005 3 mg/mL。
2 mol/L NaOH溶液:取NaOH饱和溶液50 mL,再用水稀释至500 mL,溶液保存于塑料瓶内。
钙指示剂1:5%固体混合物指示剂。称取5 g钙指示剂和NaCl(A R)试剂95 g,于玻璃研钵里小心混合并研细,然后盛于广口棕色瓶里保存〔1〕。钙指示剂2:0.5%液体指示剂。称取0.5 g钙指示剂,溶解于50 mL丙酮中,加50 mL水,摇匀,放入棕色滴瓶中备用。钙指示剂3:0.5%液体混合物指示剂。称取0.5 g已研磨好的固体指示剂(钙指示剂:氯化钠质量比为1∶19),溶解于50 mL丙酮中,加50 mL水,摇匀,放入棕色滴瓶中备用。
EDTA标准溶液:称73.81 g乙二胺四乙酸二钠(AR)溶于水中,分别用钙标准溶液1和钙标准溶液2标定,其浓度为0.049 62 mol/L。其它溶液按常规配制,实验所用水均为经电渗析脱盐、混合床离子交换树脂处理后的二次蒸馏水,其电导率≤1.2×10-4 S/m。
1.2 实验方法
取一定量钙标准溶液于锥形瓶中(m1/mg),加入一定量的2 mol/L 的NaOH溶液,加入指示剂,用水稀释至50 mL,用EDTA标准溶液滴定至酒石红色突变为天青色。计算实验值与理论值的误差,并比较计算结果是否在滴定分析允许的误差范围内。
Er=m1-c1V1M
式中:Er为误差,单位%;m1为移取钙标准溶液的质量,单位:mg;c1为EDTA的浓度,单位mol/L;M为钙的相对原子质量;V1为EDTA的滴定体积,单位:mL。
2 结果与讨论
2.1 钙基准物质的处理方法
本法中采用的钙基准物质为碳酸钙。常见的EDTA滴定钙的几种方法中,碳酸钙基准物质的溶液配制可分为两类:① 将干燥恒质量后的碳酸钙基准物质,用少量水转入容量瓶中,然后逐滴加入1∶1的HCl溶液,不断振荡,使其完全溶解,再用水稀释至刻度,摇匀〔1〕;② 取干燥恒质量后的碳酸钙基准物质于烧杯中,加少量水润湿,盖上表面皿;取1∶1 HCl分数次加入,边加边摇动使之完全溶解,再加入蒸馏水,将溶液煮沸,逐去二氧化碳;冷却后,冲洗表面皿,将溶液定量转入容量瓶中,用水稀释至刻度,摇匀〔2〕。上述不同方法的实验结果对比见表1。
对于方法1,实验探讨了容量瓶里残留的CO2是否影响滴定实验,结果见表2。由表2可见,方法1实验结果符合误差要求,因此本实验中的钙基准溶液采用方法1配制。表1 溶液不同配制方法的结果比较表2 不同溶液测定Ca2+的结果比较
2.2 不同指示剂对钙测定结果的影响
早期用于测定钙的金属指示剂主要为紫尿酸铵,近年来则多采用钙指示剂。钙指示剂化学名称为2�羟基�1(2�羟基�4�磺基�1�萘偶氮)�3�萘甲酸,又称钙红,NN指示剂,是一种黑色粉末,使用时根据配制方法不同有固体和液体之分。
常用的几种指示剂及配制方法见上述试剂部分。使用不同指示剂进行测定的分析结果见表3,各指示剂用量及使用情况见表4。由表3可见,使用该三种指示剂,均可对Ca2+进行容量分析,测定结果在滴定分析允许的0.3%误差范围内。但由于表4所述的原因,本文使用更为方便的指示剂2,即0.5%的液体指示剂。表3 不同指示剂对Ca2+测定结果的影响表4 各指示剂用量及实验结果比较
2.3 氢氧化钠的加入量
移取20 mL试样于锥形瓶中,分别加入2 mol/L NaOH溶液 0.5、1.0、1.5、2.0、3.0、5.0、7.0mL,采用0.5%液体指示剂为指示剂,实验结果见表5。由表5可见,在试样中分别加入2 mol/L的NaOH溶液0.5、1.0、1.5 mL,即溶液pH≤9时,实验测定值与真实值的误差较大,尤其是pH<9时,误差已大大超过滴定分析允许的误差;而分别加入2 mol/L 的NaOH溶液为2.0、3.0、5.0、7.0 mL时,发现溶液的pH在12~14之间,此时,实验测定值与真实值的误差,符合滴定分析的实验要求≤0.3%。但由表5可以看出,加入的NaOH量太多时,误差有变大的趋势,且随着NaOH的不断加入,溶液浑浊现象严重,易吸附指示剂,不易辨色。故本文选择2 mL作为加入NaOH溶液最为适宜的加入量,该加入量与文献〔1〕的结论一致。表5 加入不同NaOH体积量对测定Ca2+的影响
3 结 论
通过系列的实验对比研究,完善和优化后的EDTA容量法测定钙的分析方法为:取一定量样品于锥形瓶中(V),加水稀释至30 mL左右,边摇边滴加2 mol/L NaOH至溶液出现混浊时,滴加4滴0.5%液体指示剂,用EDTA标准溶液适量滴定后,再补加2 mol/L的NaOH溶液2 mL,继续滴定至酒石红色突变为天青色即为终点,记录EDTA溶液的耗量(V1),计算式为:
ρ(Ca2+)/(mg/L)=c1V1m/V
式中:c1为EDTA的浓度,单位mol/L;V1为EDTA的滴定体积,单位mL;m为钙的相对原子质量;V为样品溶液的量,单位mL。
本法主要适用于地表水、地下卤水、油田水中锂钙质量比≤1的水样中Ca2+的准确测定,误差可保证在±0.3%以内。对于含锂卤水样品,当其锂钙质量比≥1时,卤水中锂离子将严重干扰EDTA容量法测定钙,有关研究结果另文介绍。
【参考文献】
〔1〕中国科学院青海盐湖研究所分析室. 卤水和盐的分析方法〔M〕.2版.北京:科学出版社,1988:52-54.
‘柒’ 高效液相色谱法测定中药含量采用的方法有哪些
遵照下面的要求选择合适的方法,HPLC法外标、内标两种,检测器一般UV即可.
含量测定分析方法验证的可接受标准简介
摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性.
关键词:含量测定 分析方法验证 可接收标准
在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制.为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则.该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述.但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求.另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求.本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考.
1.准确度
该指标主要是通过回收率来反映.验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率.
可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%.
2.线性
线性一般通过线性回归方程的形式来表示.具体的验证方法为:
在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量.以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析.
可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%.
3.精密度
1)重复性
配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%.
2)中间精密度
配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%.
4.专属性
可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0.以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980.
5.检测限
主峰与噪音峰信号的强度比应不得小于3.
6.定量限
主峰与噪音峰信号的强度比应不得小于10.另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%.
7.耐用性
分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,每个条件下各测试两次.可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%.
8、系统适应性
配制6份相同浓度的供试品溶液进行分析,主峰峰面积的相对标准差应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%.另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定.
望采纳,谢谢
‘捌’ 如何测定食品中的水分含量有什么在线水分测定的方法
蒸馏共沸法优点:价格也比较便宜,选择性好,适合测量石油类产品。缺点:精确也较差,测量时间长。含水量较大的产品适合。卡尔费休容量法优点:测试品种多,相对库仑法通用性更好,敏感度不高所受副反应干扰较少,如(如酮类、醛类)。缺点:在最佳状态下仅能测至10-4级;耗材(试剂)大;测定时间偏长。卡氏库仑法 优点:仪器价格中等;耗材少;可以测定至10-6级;时间短,一般物质在掌握好进样量的前提下60秒内即可完成测定,是过程控制和仲裁判定的最佳方法。缺点:由于精确度高,过于敏感有些具有副反应的物质如酮类、醛类测定较困难,需要一定的经验控制反应方向。传统烘干法优点:仪器价格低廉,通用性好。缺点:精度差;仅能测定至10-3级;在干燥蒸馏过程中挥发性物质亦被蒸发,不能测定物质中水分含量的真值,试验时间过长。光谱、色谱法优点:可以测至10-6级。缺点:仪器价格昂贵;环境要求高;准备时间长(几个小时);不利于产品的过程控制。(8)中含量测定方法研究扩展阅读水分测定 根据不同形式试样中的不同水分含量提出了测定水分的不同要求。水分测定可以是工业生产的控制分析,也可是工农业产品的质量签定;可以从成吨计的产品中测定水分也可在实验室中仅用数微升试液进行水分分析;可以是含水量达百分之几至几十的常量水分分析,也可是含水量仅为百万分之一以下的痕量水分分析等等。这些仪器测定方法操作简便、灵敏度高、再现性好,并能连续测定,自动显示数据。国外的水分测定价格昂贵,是国内的一些实验室、企业无法承受的。来加强了对水分测定的研究和实践,取得了十分明显的效益,使国产水分测定的各项技术向国际水准靠拢,能够满足一般实验室和企业生产的需要。经典水分分析方法已逐渐被各种水分分析方法所代替。
‘玖’ 水果中维生素c含量的测定方法有几种
水果中维生素c含量的测定方法有三种,分别为原子吸收分光光度法、紫外可见分光光度法、高效液相色谱法。
1、原子吸收分光光度法
利用原子吸收分光光度法问接测定维生素C的含量,是利用维生素C可以与一些金属离子发生氧化还原反应,通过测定反应掉的金属离子的量,进而间接计算出维生素c的含量。
2、紫外-可见分光光度法
利用紫外-可见分光光度法测定维生素C的含量是基于维生素c在紫外光区有特征吸收,但是因为维生素C结构中具有不饱和键,具有还原性,不易稳定存在,直接测定误差较大。所以在利用紫外分光光度法测定时,维生素标准溶液和待测样的配制条件非常重要。
3、高效液相色谱法
高效液相色谱法是以液体为流动相,采用高压输液系统,将维生素C的溶剂装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而测量出维生素c的含量。
(9)中含量测定方法研究扩展阅读
维生素c含量的测定方法对比:
由于维生素C自身的不稳定,导致了很多方法测定结果误差较大,所以对维生素C稳定存在条件的探索非常重要。高效液相色谱法因为测定较准确、灵敏度高、选择性好,有较好的发展前景,是目前发展较快的一种方法。
‘拾’ 药品含量测定有哪些化学分析方法
药品含量测定的化学分析方法
包括重量分析法、酸碱滴定法、配位滴定法、氧化还原滴定法、碘量法。