❶ 统计研究的基本方法有哪几种
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差...这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小
分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相
同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。
18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。
19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。
20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。
21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。
22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。
23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。
24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。
25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。
26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。
27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。
28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。
29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。
30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。
31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。
32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。
33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。”
34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。
35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。
36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。
37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。
38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。
39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。
❷ 什么是医学统计学
医学统计学名词解释
(注:医学统计学名词解释一般会考英文,所以一定要同时记住他的英文,各个学校考察重点不同,自己进行删减添加即可,大致都是这些)
1. 统计学 (Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学
2. 医学统计学 :是以医学理论为指导,借助统计学的原理和方法研究医学现象中的数据搜集、整理、分析和推断的一门综合性学科。
3. 变量 :是指观察个体的某个指标或特征,统计上习惯用大写拉丁字母表示
4. 同质 :是指事物的性质、影响条件或背景相同或相近。
5. 变异 :是指同质的个体之间的差异
6. 总体 :总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。
7. 样本 :从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。
8. 参数 :参数(paramater)是指总体的统计指标,如总体均数、总体率等。总体参数是固定的常数。多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
9. 统计量 :统计量(statistic)是指样本的统计指标,如样本均数、样本率等。样本统计量可用来估计总体参数。总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
10. 随机抽样 :随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。
11. 变异 :在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
12. 计量资料 :对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。
13. 计数资料 :将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。
❸ 医学论文写作中分析数据的统计方法有哪些
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:
打开网络APP,查看更多高清图片
一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。
二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。
三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。
另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。
医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。
至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显着性,有时会刻意回避报道差异的不显着结果,不思考和探究差异不显着的原因和意义,反而会因此忽视一些重大的科学发现。
❹ 医学科研中的常见统计学方法有哪些
医学科研中的常见统计方法学有哪些 就要找专业的人士问一下吧 这个太难了
❺ 医学科研中常用的统计学方法有哪些
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。
2、建好分析用的数据库
建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义
❻ 写出医学科研中的常用统计学方法有哪些
常用的医学科研统计方法有:计量资料的统计方法可分为参数检验法和非参数检验法。参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的;方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性
❼ 学好医学统计学的方法
可以先从医学统计学与统计学的差异入手。很明显,医学统计学是一门应用性很强的学科。
而期望学好医学统计学的人,绝大多数也是想在自己的学习工作中应用,而不是进行方法学的研究。
那么,首先,熟悉一款统计学软件就是必须的了。当然,我这里要提到万恶的SPSS。虽然是我很不喜欢的一款软件,但对于新手来说还是相当容易上手的。(后期建议走Stata-SAS-R-Python-MatLab的路线,依次学下来,当然,精通一个就可以了。)
熟悉了SPSS,基本上就可以完成医学统计学入门。
熟悉SPSS,最重要的就是明确,何种数据用何种统计方法,到具体操作,那就太容易了。
而何种数据用何种方法,可以搜一下统计分析路径,很多路线图,可以帮助进行统计学方法的筛选确定。
学很久医学统计之后,跳出来看,其实真的没什么。
另外,关注一些相关的微信公众号,也可以学到很多,比较不错的,一个“biostat”,专注医学统计方面知识的传播,很多原创内容。
❽ 医学统计学
医学统计学
医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。
基本信息
中文名:医学统计学
拼音:yixuetongjixue
内容:统计研究设计
特点
生物现象的一个重要特点就是普遍存在着变异。所谓变异(个体差异),系指相同条件下同类个体之间某一方面发展的不平衡性,系偶然因素起作用的结果。例如同地区、同性别、同年龄的健康人,他们的身长、体重、血压、脉搏、体温、红细胞、白细胞等数值都会有所不同。又如在同样条件下,用同一种药物来治疗某病,有的病人被治愈,有的疗效不显着,有的可能无效甚至死亡。引起客观现象差异的原因是多种多样的,归纳起来,一类原因是普遍的、共同起作用的主要因素,另一类原因则是偶然的、随机起作用的次要因素。这两类原因总是错综复杂地交织在一起,并以某种偶然性的形式表现出来。科学的任务就在于,要从看起来是错综复杂的偶然性中揭露出潜在的必然性,即事物的客观规律性。这种客观规律性是在大量现象中发现的,比如临床要观察某种疗法对某病的疗效时,如果观察的病人很少,便不易正确判断该疗法对某病是否有效;但当观察病人的数量足够多时,就可以得出该疗法在一定程度上有效或无效的结论。所以,医学统计学是医学科学研究的重要工具。
医学统计学在本世纪二十年代以后才逐渐形成为一门学科。解放前,我国学者即致力于把统计方法应用到医学中去,但人力有限、范围较窄。解放后,随着医学科研工作的发展,本学科得到迅速普及与提高。通过大量实践,在不少方面积累了自己的经验,丰富了医学统计学的内容。而电子计算机的作用,更促进了多变量分析等统计方法在医学研究中的应用。
❾ 医学统计学重点知识归纳有哪些
医学统计学重点知识如下:
1、医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2、医学多元统计方法:多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3、变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
4、截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。原因:失访/退出/终止(研究时限已到而终止观察)。
5、总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
❿ 统计研究的基本方法有哪些
统计学的基本研究方法有5种。
大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
统计模型法
在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。在研究这种数量变动关系时,需要根据具体的研究对象和一定的假定条件,用合适的数学方程来进行模拟,这种方法就叫做统计模型法。
统计推断法
在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。这种由样本来推断总体的方法就叫统计推断法。统计推断法已在统计研究的许多领域得到应用,除了最常见的总体指标推断外,统计模型参数的估计和检验、统计预测中原时间序列的估计和检验等,也都属于统计推断的范畴,都存在着误差和置信度的问题。在实践中这是一种有效又经济的方法,其应用范围很广泛,发展很快,统计推断法已成为现代统计学的基本方法。