❶ 在解析几何中,运用代数方法研究几何问题是实质,还是用几何方法研究代数问题是实质,为什么求解释
在解析几何中,实质是运用代数方法研究几何问题。中学解析几何,主要是用代数方法研究圆锥曲线的几何特征。
❷ 你认为初中代数和几何分开教学的利弊是什么呢
初中学习的数学都是几何和代数分开学习的,一般而言初中先学习的是代数,代数的学习一般是在初一一学年和初二上半学年学习的。几何是在初二下半学年开始,一直到初三的上班学年才结束。最后一个学期一般是将几何和代数进行结合,就是我们熟知的数形结合。代数也就是我们常见的函数,包括一元函数,二元函数和反比例函数,这也是最基本的代数。几何学习的也是最基本的形状图形特征,一般是矩形,圆形等图形。而数形结合就是将图形和函数进行结合,同函数表达图形,从而更好的用代数的方法解决几何上的问题。
总的来说,分开学习还是比一起学习的更有优势,因为分开学习可以更好的夯实基础,巩固知识点。虽然有一定的不适应期,但是这也是每个人可以克服的,适应后题目就基本得心应手。
❸ 解析几何与非解析几何相比存在哪些优势
解析几何可以运用多种数学方法,以代数的形式进行解析,能够从多个方向得到相同的答案,但有时比较复杂.而非解析几何可以直接套用公式,但公式虽然有时有,不知道的话还是没办法,想不到照样做不出题.我认为应该两者结合,综合考虑,在做几何题时尽量作个图,直观地展示题目的意思,从而选择正确的方法
❹ 代数几何与解析几何有什么区别分别都是研究什么内容的
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何。代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面。 代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。
解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支。在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。 笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用。
❺ 为什么解析几何问题可以用代数方法解决
你只要搞清楚解析几何是如何建立的就行了
比如说,在平面上取一个点O(相当于原点),然后过O取两条垂直的直线L1和L2(相当于坐标轴)
平面上的任何一点P都可以向L1和L2引垂线得到垂足P1和P2,那么P点基本上由线段长度|OP1|=|PP2|和|OP2|=|PP1|确定,最多有四个点会得到相同的投影线段长度
为了唯一确定P,可以给OP1和OP2加上符号,先给L1和L2各自定一个方向,然后看OP1的方向与L1的方向是否一致来确定OP1的符号(相当于确定了P的横坐标),同样确定OP2的符号(纵坐标),这样一来P的位置就唯一地由OP1和OP2的数值确定
至此平面上每个点都可以用上述投影的方式来和一对实数建立起一一对应关系,如果你把括号里的话全都去掉那就是在平面几何里反复做垂线的过程,不需要知道解析几何的概念
再看求交点,用上述方式建立起对应关系之后满足某些性质的点放到一起形成一个点集,一般来讲曲线可由一个二元方程来刻画,而一次或二次的曲线方程的建立都依赖于距离,和L1或L2平行的线段的距离没什么好说的,不平行的话可以用勾股定理转化到前者(这样建立了解析几何里的距离公式),这样一来即使在平面几何里也可以直接建立起曲线方程
两曲线的交点P必须满足
1)若P在曲线C1上当且仅当OP1和OP2满足C1对应的方程
2)若P在曲线C2上当且仅当OP1和OP2满足C2对应的方程
所以方程组的联立解唯一确定P的位置
反正解析几何处理的问题就是用代数的方式去描述几何,如果回避掉解析几何只要反复做垂线和平行线然后用平行线的性质以及勾股定理就行了,等到代数化之后代数的问题当然可以用代数学里面的定理。事实上代数和几何的界限本来就是人为的,并不是说两者非常独立
❻ 韦达在几何学上做出了哪些贡献
韦达充分发挥自己在代数研究上的优势,用代数方法研究解决了一些几何问题。他给出了一些尺规作图问题涉及的代数方程知识,较早地将着名的倍立方体问题(“求作一立方体的边,使该立方体的体积为给定立方体的两倍”)和三等分角问题(“分一个给定的任意角为三个相等的部分”)转化为解三次方程的问题。事实上着名的三大几何作图问题——倍立方体问题、三等分角问题和化圆为方问题(“作一个正方形,使其与一给定的圆面积相等”),只有圆规和直尺是不能完成精确的作图的。直到19世纪,这种不可能性才被数学家证明,距离这三大问题的提出已经有两千年之久了。
韦达在《各种数学解答》一书中,讨论了一些几何作图问题,给出了无穷几何级数的求和公式,还最早明确给出了计算圆周率π的如下公式:
韦达利用圆的内接393216边形将π精确到小数点后10位数字,这在当时是欧洲最好的圆周率值。韦达用代数方法解决几何问题的思想对后来的数学发展的意义是深远的,因为它正体现了解析几何学的根本精神。
❼ 判断圆与圆的位置关系, 有代数法和几何法两种方法,几何法比较简单,具体说说几何法的好处
直观,一目了然。无交点相离或内含,只有一个交点外切或内切,两个交点相交。不用计算圆心距与半径的关系。
❽ 函数中,代数法和图像法各有什么优点和缺点
他们本质相同.不同的表达手段.
代数更迅速准确,图像更直观明朗.
早期的数学研究遵循几何原理,近代以来,代数逐渐占据了绝对主宰.
以代数为主,几何为辅助.
❾ 代数几何与解析几何有什么区别
两者都是代数和几何的交叉学科。但个人感觉两者间具有本质的不同,代数几何最基本的特质是代数,代数是渗透一切的血液;而解析几何根本上来说属于几何,代数是研究几何的一种辅助手段。
❿ 在数学中为什么要用代数的方法来研究几何问题
历史上把用代数研究几何的方法称为解析几何。在欧几里得几何出现的几百年后,各种非欧几何开始出现,解析几何就是非欧几何的一种。在解析几何中,数轴上的点、直角坐标系上的点、多维坐标系上的点可以分别表示实数、有序实数对和有序多维实数对。这样整个几何空间的点都可以用数来表示和衡量。这样欧式几何学的定理都可以通过向量的运算解决。降低了几何证明的难度。