Ⅰ 数据可视化常用的方式有哪些
一、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
二、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
三、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
四、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
五、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
关于数据可视化常用的方式有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 我们可以用哪些工具做大数据可视化分析
通过互联网行技术的不断突破,数据可视化分析不仅仅是通过编码才能实现的简单的静态分析展现,而涌现了大批的数据可视化工具。
今天就来讲讲数据可视化吧,我来推荐一些实用的数据可视化工具,这些工具包含:
专业的大数据分析工具
各种Python数据可视化第三方库
其它语言的数据可视化框架
一、专业的大数据分析工具
1、FineReport
FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,它“专业、简捷、灵活”的特点和无码理念,仅需简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。
来看看它做的dashboard吧:
Ⅲ 做数据分析想要达到数据可视化效果,怎么弄
可以借助数据可视化分析软件呀。如果数据太多,不好好的做数据可视化分析根本无法判断好坏;没有达到数据可视化的话,很多问题容易被隐藏。数据可视化分析一般通过仪表盘、柱状图、折线图以及各类图表的展现,以更易理解的方式来诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。——奥 威 BI 好 用
可以看看
Ⅳ 一般用哪些工具做大数据可视化分析
大数据正在走进人们的生活。虽然获取数据问题不大,但有很多人不知道如何得出结论,因为数据太多。常见的数据可视化工具,在这里推荐9个:
1、Datawrapper
Datawrapper是一个用于制作交互式图表的在线数据可视化工具。一旦您从CSV文件上传数据或直接将其粘贴到字段中,Datawrapper将生成一个条,线或任何其他相关的可视化文件。许多记者和新闻机构使用Datawrapper将实时图表嵌入到他们的文章中。这是非常容易使用和生产有效的图形。
2、Tableau Public
Tableau Public可能是最流行的可视化工具,它支持各种图表,图形,地图和其他图形。这是一个完全免费的工具,你用它制作的图表可以很容易地嵌入到任何网页中。他们有一个不错的画廊,显示通过Tableau创建的可视化效果。
虽然它提供的图表和图形比其他类似工具要好得多,但我并不喜欢使用它的免费版本,因为它附带了一个很大的页脚。如果不是像我这样大的关闭,那么你一定要试试看。或者如果你能负担得起,你可以去付费版本。
3、Smartbi
Smartbi作为成熟的大数据分析平台,具备可复用、 动静结合独特的展示效果,使得数据可视化灵活强大,动静皆宜,为广大用户提供了无限的应用能力和想象空间。
除了支持使用Excel作为报表设计器,完美兼容Excel的配置项。支持Excel所有内置图形、背景图、条件格式等设计复杂的仪表盘样式,同时支持完整ECharts 图形库,支持各种各样的图形,包含瀑布图、关系图、雷达图、油量图、热力图、树图等几十种动态交互的图形,借助于地理信息技术,还打造了地图分析功能。
4、Chart.js
非常适合小型项目。尽管只有六种图表类型,开源图书馆Chart.js是用于爱好和小型项目的完美数据可视化工具。使用HTML 5 canvas元素绘制图表,Chart.js创建响应式平面设计,并且正在迅速成为最流行的开源图表库之一。
5、Raw
Raw将自己定义为“电子表格和矢量图形之间的缺失链接”。它建立在D3.js之上,设计得非常好。它有这样一个直观的界面,你会觉得你之前使用过它。它是开源的,不需要任何注册。
它有一个21图表类型的库可供选择,所有的处理在浏览器中完成。所以你的数据是安全的。RAW是高度可定制和可扩展的,甚至可以接受新的自定义布局。
6、Infogram
Infogram使您可以在线创建图表和图表。它有一个有限的免费版本和两个付费选项,其中包括200+地图,私人共享和图标库等功能。
它配备了一个易于使用的界面,其基本图表设计良好。我不喜欢的一个功能是当您尝试将交互式图表嵌入到您的网页(免费版)时所获得的巨大徽标。如果他们能像DataWrapper使用的小文本那样更好。
7、Timeline JS
顾名思义,Timeline JS可以帮助您创建美丽的时间线而无需编写任何代码。它是一个免费的开源工具,被Time和Radiolab等一些最受欢迎的网站所使用。
这是一个非常容易遵循四步过程来创建您的时间表,这在这里解释。最好的部分?它可以从各种来源获取媒体,并内置对Twitter,Flickr,Google Maps,YouTube,Vimeo,Vine,Dailymotion,Wikipedia,SoundCloud和其他类似网站的支持。
8、Plotly
Plotly是一个基于Web的数据分析和绘图工具。它支持具有内置社交分享功能的图表类型的良好集合。可用的图表和图表类型具有专业的外观和感觉。创建图表只需要加载信息并自定义布局,坐标轴,注释和图例。如果你想要开始,你可以在这里找到一些灵感。
9、Visualize Free
Visualize Free是一个托管工具,允许您使用公开可用的数据集,或者上传您自己的数据集,并构建交互式可视化来演示数据。可视化远远超出简单的图表,而且服务是完全免费的,而开发工作需要Flash,输出可以通过HTML5完成。
Ⅳ 数据可视化的方法有哪些
数据可视化就是将数据分析的结果用图表的形式展现出来。
可以实现数据可视化的工具有:Excel、报表、BI
图表的展现形式有:柱状图、条形图、折线图、饼图、雷达图、地图、漏斗图、仪表板图、散点图、桑基图、词云和矩形树图等各种各种图形。
以下展示几张通过观远数据BI平台做的数据可视化大屏:
Ⅵ 数据可视化通过哪些方式让数据展现的更直观
数据可视化的一般流程
首先我们需要对我们现有的数据进行分析,得出自己的结论,明确要表达的信息和主题(即你通过图表要说明什么问题)。然后根据这个目的在现有的或你知道的图表信息库中选择能够满足你目标的图表。最后开始动手制作图表,并对图表进行美化、检查,直至最后图表完成。
这里我们容易犯的一个错误是:先设想要达到的可视化效果,然后在去寻找相应的数据。这样经常会造成:“现有的数据不能够做出事先设想的可视化效果,或者是想要制作理想的图表需要获取更多的数据。”这样的误区。
常用的可视化工具
1、Microsoft Excel
对于这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
2、Google Spreadsheets
Google Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
3、Tableau Software
Tableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
4、一些需要编程性语言的工具
R语言、JavaScript、HTML、SVG、CSS、Processing、Python。这里主要是列举一下有哪些编程语言可以实现可视化,具体如何实现需要读者自行学习。
Ⅶ 体数据可视化的各种算法和技术的特点有哪些
LightingChart:网页链接
体数据集可以通过MRI,CT,PET,USCT或回声定位等技术捕获,也可以通过物理模拟(流体动力学或粒子系统)产生。
视化体数据包括四种主要算法。
1、基于切片方法,这意味着给予每个体数据切片滚动交互单独可视化机会。此技术的优点在于操作简单和复杂计算少。而它的缺点是可视化人员需要想象重建整个对象结构
2、其他技术仿真:这种方法很适合于熟悉一定技术的专家可视化分析应用。比如,应用于医疗和地震行业的新技术开发,专家们可以从旧技术解决方案平稳过渡到现代化技术
3、间接体绘制:间接体渲染可以有多种工具用于多边形网格模型。此方法包含两个阶段,第一阶段是根据特定阈值从数据集中提取等值面,有几种算法可以进行该任务(最受欢迎的是Marching Cubes )。 有时,可以通过开发基于特定数据集的特定特征的特殊算法来改进等值面提取。然后用三维图像引擎或其它工具可视化多边形曲面模型,比如: LightningChart的网格模型非常合适于该方法。
4、直接体绘制:直接体绘制不要求预处理。 直接从原始数据集观察数据,为算法提供了动态修改传递功能和阈值的机会。而且有些方法允许以半透明的方式可视化数据集的内部结构。
直接体绘制是目前可视化数据最强大的方法。可视化具有多边网格模型的所有优点,并且可以在同一场景中轻松绑定。此外,可以切割模型的一部分来查看被物体表面隐藏的结构。
Ⅷ 数据分析之常见的数据可视化方法有哪些
【导读】现如今已然是大数据时代,许多企业的发展离不开数据分析。大数据可视化分为不同的类型:探索型和解释型。勘探类型帮助人们发现数据背后的故事,而解析数据方便给人们看。那么,在数据分析中,常见的数据可视化方法有哪些呢?今天就跟随小编一起来了解下吧!
时态
时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。
多维
可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。
分层
分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。
网络
在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。
以上就是小编今天给大家整理分享关于“数据分析之常见的数据可视化方法有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
Ⅸ 数据可视化常用的五种方式及案例分析
概念借助于图形化的手段,清晰、快捷有效的传达与沟通信息。从用户的角度,数据可视化可以让用户快速抓住要点信息,让关键的数据点从人类的眼睛快速通往心灵深处。 数据可视化一般会具备以下几个特点:准确性、创新性 和 简洁性。
常用五种可视化方法
下面从最常用和实用的维度总结了如下5种数据可视化方法,让我们来一一看一下:
一、面积&尺寸可视化对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。
这种方法会让浏览者对数据及其之间的对比一目了然。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。
a: 天猫的店铺动态评分天猫店铺动态评分模块右侧的条状图按精确的比例清晰的表达了不同评分用户的占比。从下图中我们第一眼就可以强烈的感知到5分动态评分的用户占绝对的比例。
b: 联邦预算图如下图,在美国联邦预算剖面图里,用不同高度的货币流清晰的表达了资金的来源去向,及每一项所占金额的比重。
c: 公司黄页-企业能力模型蜘蛛图如下图,通过蜘蛛图的表现,公司综合实力与同行平均水平的对比便一目了然。
二、颜色可视化
通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。a: 点击频次热力图比如下面这张眼球热力图,通过颜色的差异,我们可以直观的看到用户的关注点。
b: 2013年美国失业率统计在图中可以看到,通过对美国地图以州为单位的划分,用不同的颜色来代表不同的失业率等级范围,整个的全美失业率状况便尽收眼底了。
c: 美国手机用户城市分布图中红点是用iPhone的人,绿点是用安卓的人。这两张在微博上看到的图,第一张是美国一个城市的一览,第二张图特写了纽约的市中心,尤其是曼哈顿地区。我们可以看到在市中心和主干道的人用iPhone居多,而用安卓的人都在郊区。这也引起了人们的热议,有的说在美国富人都住郊区别墅,所以富人爱用安卓手机;有的反驳说曼哈顿地区的人几乎都用iPhone,说明富人喜欢用iPhone手机。不管结论如何,都足以说明用户都被这些图所吸引,所以可视化的方式效果真的很直观。
注:科学家统计了2年里30亿条含有地理数据的twitter推文,根据客户端总结出来的数据。
三、图形可视化在我们设计指标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表更加生动的被展现,更便于用户理解图表要表达的主题。
Examples:
a: iOS手机及平板分布如下图所示,当展示使用不同类型的手机和平板用户占比时,直接用总的苹果图形为背景来划分用户比例,让用户第一眼就可以直观的看到这些图是在描述苹果设备的,直观而清晰。
b: 人人网用户的网购调查下图可以看出,该数据可视化的设计直接采用男性和女性的图形,这样的设计让分类一目了然。再结合了颜色可视化(左面蓝色右面粉色),同时也采用了面积&尺寸可视化,不同的比例用不同长度的条形。这些可视化方法的组合使用,大大加强了数据的可理解性。
四、地域空间可视化当指标数据要表达的主题跟地域有关联时,我们一般会选择用地图为大背景。
这样用户可以直观的了解整体的数据情况,同时也可以根据地理位置快速的定位到某一地区来查看详细数据。
a: 美国最好喝啤酒的产地分布下图中,通过以美国地图为大背景,清晰的记录了不同州所产啤酒在1987-2007年间在美国啤酒节中获得的奖牌累计总数。再辅以颜色可视化的方法,让用户清晰的看到美国哪些州更盛产好喝的啤酒。
五、概念可视化通过将抽象的指标数据转换成我们熟悉的容易感知的数据时,用户便更容易理解图形要表达的意义。
a: 厕所贴士下图是厕所里贴在墙上的节省纸张的环保贴士,用了概念转换的方法,让用户清晰的感受到员工们一年的用纸量之多。
如果只是描述擦手纸的量及堆积可达高度,我们还没有什么显性化概念。但当用户看到用纸的堆积高度比世界最高建筑还高、同时需砍伐500多颗树时,想必用户的节省纸张甚至禁用纸张的情怀便油然而生了。所以可见用概念转换的方法是多么的重要和有效。
b: Flickr云存储空间达1TB的可视化描述Flickr对云存储空间升至1TB确实是让人开心的事情,但相信很多人对这一数量级所代表的含义并不清晰。
所以Flickr在宣传这一新的升级产品时,采用了概念可视化的方案。从下图可以看出,用户可以动态的选择照片的大小,之后Flickr会采用动态交互的方式计算和显示出1TB能容纳多少张对应大小的图片。这样一来,用户便有了清晰的概念,知道这1TB是什么量级的容量了。
注意事项在总结了常见维度的数据可视化方法和范例之后,要再次总体强调下做数据可视化设计时的注意事项,总结了三点如下:
1)设计的方案至少适用于两个层次:一是能够整体展示大的图形轮廓,让用户能够快速的了解图表所要表达的整体概念;之后再以合适的方式对局部的详细数据加以呈现(如鼠标hover展示)。
2)做数据可视化时,上述的五个方法经常是混合用的,尤其是做一些复杂图形和多维度数据的展示时。
3)做出的可视化图表一定要易于理解,在显性化的基础上越美观越好,切忌华而不实。
总结:作为设计师,除了掌握方法来有针对性的设计之外,还要在平时多留心积累素材,同时培养自己的创造力和专业素养,保持一颗好奇心,才能真正的设计出样式精美又实用的数据可视化图表。
Ⅹ 大数据可视化分析步骤有哪些
1、需求分析
需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。
2、建设数据仓库/数据集市的模型
数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。
3、数据抽取、清洗、转换、加载(ETL)
数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。
数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。
4、建立可视化场景
建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。