❶ 告诉大家几种修整金刚石砂轮的妙招
摘要 用白刚玉砂轮可以修整金刚石砂轮:
❷ 轴承滚道磨削加工
磨削主要是切入磨和摆动磨两种
切入磨:通过修整器(金刚笔或、金刚滚轮修正)修整砂轮形状,垂直于被切削面进行磨削。
摆动磨:让砂轮绕轴线摆动,通过橡胶砂轮的自锐性,自动修型而进行的磨削。
1、砂轮需修整原因:在磨削过程中,砂轮片的磨粒在摩擦、挤压作用下,它的棱角逐渐磨圆变钝,或者在磨韧性材料时,磨屑常常嵌塞在砂轮表面的孔隙中,使砂轮片表面堵塞,最后使砂轮片丧失切削能力。
这时,砂轮片与工件之间会产生打滑现象,并可能引起振动和出现噪声,使磨削效率下降,表面粗糙度变差。同时由于磨削力及磨削热的增加,会引起工作变形和影响磨削精度,严重时还会使磨削表面出现烧伤和细小裂纹。
此外,由于砂轮片硬度的不均匀及磨粒工作条件的不同,使砂轮片工作表面磨损不均匀,各部位磨粒脱落多少不等,致使砂轮片丧失外形粘度影响工件表面的形状精度及表面粗糙度。
2、可以用砂轮修整器来进行修整。砂轮修整器是用于手动平磨、万能工具磨及各种平面磨床、曲线磨床上,修整由直线和园弧组成的各种砂轮截形的专用机床附件。
修整方法有砂轮修整有车削、用金刚石滚轮、磨削和滚轧等方法。
(3)精密轴承磨削金刚滚轮修整工艺优化方法研究扩展阅读:
砂轮修整器包含有:万能砂轮修整器、透视砂轮修整器、万能透视砂轮修整器、角度砂轮修整器、常规砂轮修整器等。
使用注意事项:
1、使用时,应将砂轮修整器放在机床的磁力吸盘上(或紧固在工作台上),以底座的一个侧面定位(或校正),调整机床砂轮中心高度与金刚刀或凹凸不同的圆弧。
2、为保证修整器正常工作,应在使用中保持摆动、转动、移动等部件的灵活、可靠。为此应适时清洗、注油并防止磕碰与锈蚀现象的发生。
❹ 告诉大家几种修整金刚石砂轮的妙招
目前业者一般使用的砂轮修整方法有:氧化铝削锐棒、钻石修刀,钼、红铜、软钢等无动力同方向煞车式削整器等工具。这几种方式修整的不利之处在于耗时会破坏砂轮整体结构,除了会降低砂轮使用寿命,在大尺寸砂轮、宽边砂轮、极薄砂轮及极细粒度的削整,不易获得良好的修整精度。
另种快速修整的方式动力式金刚石砂轮修整器。
如台湾宏富信砂轮削整器采用游离磨料滚动交叉方式修整,以柔克刚,不会破坏砂轮的整体结构。
可修整半圆,同时完成两个角度。修整精度、真圆度与平坦度均在0.1μm以内。修正、修锐一次完成,较一般修整方式快20倍以上。适用修整砂轮:金刚石砂轮、钻石砂轮、CBN砂轮、树脂砂轮、金属砂轮。
修整器适用外圆磨床、平面磨床。
❺ 轴承加工论文怎么写
对于套圈,影响FAG轴承振动最为严重的也是沟道波纹度和表面粗糙度。国内外大量轴承加工论文试验表明:保持架、套圈、钢球的加工质量对轴承振动具有不同程度的影响,其中钢球的加工质量对轴承振动影响最明显,其次是套圈的加工质量,最主要影响因素是钢球和套圈的圆度、波纹度、表面粗糙度、表面磕碰伤等。
我国钢球产品最突出的问题是振动值离散大,表面缺陷严重(单点、群点、凹坑等),尽管表面粗糙度、尺寸、形状、误差都不低于圈外水平,但合套后轴承振动值高,甚至产生异音,主要问题是波纹度没有控制(无标准、无合适测试分析仪器),但最根本的措施是要降低磨削超精过程中的波纹度,同时说明机床的抗振性差,砂轮、研磨盘、冷却液、工艺参数均存在问题;另一方面要提高管理水平,避免磕碰伤、划伤、烧伤等随时机性质量问题。
例如,中小型深沟球轴承内外沟道圆度大于2μm时,将对SKF轴承振动产生明显影响,内外沟道波纹度大于0.7μm时,轴承振动值随波纹度增加而增加,沟道严重磕伤可使振动上升4dB以上,甚至出现异音。
提高精给系统的进给分辨率,降低进给惯性;主轴动静刚度及其速度特性对低噪声球轴承磨削振动影响很大,刚度越高,磨削速度对磨削力的变化越不敏感,磨削系统振动越小;无论是钢球还是套圈,波纹度产生于磨削加工,超精研虽然可以改善波纹度并降低粗糙度,避免随机性磕碰伤,主要有两方面措施:
一是降低滚动表面磨削超精时的振动,获得良好的表面加工形状精度和表面纹路质量为降低振动,磨超机床必须具有良好的抗振性,床身等重要结构件具有吸振性,超精机床的油石振荡系统具有良好的抗振动性能;提高磨削速度,国外磨削6202外滚道普遍采用6万电主轴,磨削速度60m/s以上,国内一般低得多,主要受主轴及主轴承性能的限制。在高速磨削时,磨削力小,磨削变质层薄,不容易烧伤,又可以提高加工精度和效率,对低噪声球轴承影响很大;提高主轴轴承支刚性,采用随机动平衡技术,提高磨削主轴的抗振性。INA轴承国外磨头振动速度(如Gamfior)约为国内一般主轴的十分之一;提高砂轮油石的切削性能及修整质量至关重要。我国目前砂轮油石主要问题是组织结构均匀性差,严重影响低噪声球轴承磨超加工质量;充分冷却,提高过滤精度;合理的磨超加工工艺参数和加工流程是不可忽视的因素,磨削留量要小,形位公差从严,中小型球轴承外径不宜用超精研,粗精磨超不宜分开,以保证良好的表面质量。
二是提高加工基准面精度,降低磨超加工过程中的误差复映外径与端面是磨超加工过程中的定位基准。外径对沟道超精的误差复映是通过外径对沟磨,沟磨对沟超的误差复映间接传递的。如果工件在传递过程中产生磕碰伤,将直接复映到滚道加工表面上,影响NSK轴承振动。所以必须采取以下措施:提高定位基准表面形状精度;加工过程中传递平稳,无磕碰伤;毛坯留量形位误差不能过大,特别是在留量较小时,过大误差会造成终磨和超精结束时形状精度尚未改善到最终的质量要求,严重影响加工质量的一致性。
从上面分析不难看出:随着工业先进国家主机技术不断提高,联线越来越简单,逐步减少或不用主动测量和机外检测;由高性能、高稳定性机床系统组成的自动线方式磨超加工低噪声球轴承最合适,可以避免磕碰伤,降低传递误差,排除人工因素,提高加工效率和质量一致性,降低生产成本,提高企业效益。
如何降低球轴承噪声呢?应从以下两方面着手努力:
(一)制造工艺。工艺流程精化,主要指工艺流程尽可能短,工序加工合并,生产无中间库存,有效降低影响低噪声球NTN轴承性能工艺因素;生产洁净化,这是一个系统的技术,包括磨削液、超精液、清洗液、空气、高压空气、生产环境等技术工艺;自动化,从车加工到装配全过程自动化,少人或无人化;规模化,此类轴承特别是静音球轴承,必须形成大规模化,才能具备全球市场竞争能力。
(二)装备。高速磨削、电主轴精度、刚度、寿命以及各种完善的检测保护性能对磨削加工精度与效率起主要作用;磨床技术,国外内圆磨床一般都具备高速磨削,交流伺服控制,进给分辨率0.25μ,全自动简易操作,自诊断功能等;超精技术,主要以日本大阪精机为代表的无心支承两工位超精和以德国梯伦豪斯为代表的液压定心四工位超精两种方式;在线检测技术,二十世纪八十年代以来,日本轴承工业以主动测量机外反馈控制的自动磨超短线应用最为普遍。我国以此方式构成的磨超自动线应用也比较成熟,目前国内已有100条左右。无心外圆磨床,圆外(KOYO、MIKROSA等)普遍采用滚动TIMKEN轴承砂轮主轴单元,具有高刚度、高精度、长寿命、装卸方便、使用可*等一系列优点;床身具有阻尼衰减减特性;进给采用高精度微动交流伺服系统,稳定的传动交流变频导轮调整系统,可具备在线随机智能化测量,可实现CBN砂轮磨削等,可实现自动联线,圆度可达0.3μm,尺寸分散可达3μm。
平面磨床,国外双端(如KOYO、Landis Gardner)面磨床主轴都普遍采用高精度、高刚度滚动NACHI轴承主轴单元砂轮轴系统,油雾润滑。以Gardner技术为例,该公司研究生产系统装备已有九十多年历史,可磨削轴承、陶瓷、玻璃、橡胶、塑料等材料。主要技术有自动砂轮修整和补偿,砂轮磨头进给以伺服电机丝杠同轴结构,砂轮向内外快速同步进给,进给精度可达到0.25μm,机身放置在两个水平垫块和平衡器上,平衡器具有自平衡支承杆,可自动调整与两个水平垫块成一水平面,使机床得到一个稳固的支承效果,平衡器重点是在维持砂轮轴同心度,增加修整砂轮间隔时间,工件进给有旋转式、往复式、贯穿式和特殊四种形式,可使用超级磨料砂轮,金刚石砂轮和CBN磨削,磨削精度高、稳定性好,极长的砂轮使用寿命和方便的操作调整,可以根据加工要求专门配制磨料、结合剂、结构(圆环、钮状或环节状),从而达到最佳磨削效果,平行差及平面度达1μm。本文地址: http://www.nskfag.org/news/201105_36756.html
❻ 轴承内圆磨各项问题如何解决
1.内圆磨削方法
(1)普通内圆磨床的磨削方法 普通内圆磨床是生产中应用最广的一种,磨削时,根据工件的外形和尺寸不同,可采用纵磨法、横磨法,有些普通内圆磨床上备有专门的端磨装置,可在一次装夹中磨削内孔和端面,这样不仅轻易保证内孔和端面的垂直度,而且生产效率较高。
(2)无心内圆磨床磨削
磨削时,砂轮除了完成主运动ns外,还作纵向进给运动fa和周期性横向进给运动fr。加工结束时,压紧轮沿箭头A方向摆开,以便装卸工件。这种磨削方法适用于大批大量生产中,外圆表面已精加工的薄壁工件,如轴承套等。
2.内圆磨削的工艺特点及应用范围
内圆磨削与外圆磨削相比,加工条件比较差,内圆磨削有以下一些特点:
(1)砂轮直径受到被加工孔径的限制,直径较小。砂轮很轻易磨钝,需要经常修整和更换,增加了辅助时间,降低了生产率。
(2)砂轮直径小,即使砂轮转速高达每分钟几万转,要达到砂轮圆周速度25~30m/s也是十分困难的,由于磨削速度低,因此内圆磨削比外圆磨削效率低。
(3)砂轮轴的直径尺寸较小,而且悬伸较长,刚性差,磨削时轻易发生弯曲和振动,从而影响加工精度和表面粗糙度。内圆磨削精度可达IT8~IT6,表面粗糙度Ra值可达0.8~0.2μm。
(4)切削液不易进进磨削区,磨屑排除较外圆磨削困难。
固然内圆磨削比外圆磨削加工条件差,但仍然是一种常用的精加工孔的方法。特别适用于淬硬的孔、断续表面的孔(带键槽或花键槽的孔)和长度较短的精密孔加工。磨孔不仅能保证孔本身的尺寸精度和表面质量,还能进步孔的位置精度和轴线的直线度;用同一砂轮,可以磨削不同直径的孔,灵活性大。内圆磨削可以磨削圆柱孔(通孔、盲孔、门路孔)、圆锥孔及孔端面等。
3.普通内圆磨床
磨削时,砂轮轴的旋转为主运动,头架带动工件旋转运动为圆周进给运动,工作台带动头架完成纵向进给运动,横向进给运动由砂轮架沿滑鞍的横向移动来实现。磨锥孔时,需将头架转过相应角度。
❼ 精密交叉滚子轴承生产中机床砂轮出现振动如何调整
精密交叉滚子轴承一般用于精密数控转台、医疗器械、测量仪器等设备,对轴承精度和寿命要求极高,洛阳佰纳轴承专业生产各种型号精密交叉滚子轴承,在交叉滚子轴承生产方面积累了大量的经验,技术精湛。轴承生产过程中砂轮震动问题是影响零件加工精度的一个特重要因素,所以了解如何克服磨床砂轮震动问题非常必要,下面佰纳工程师就此问题做以下详述:
轴承磨削属于精加工,磨削时砂轮与零件接触部分将进行高速磨削,所产生的磨削热及机械力相当大,如果砂轮或轴承安装不到位,固定不稳将造成砂轮和零件间震动增大,产生砂轮花甚至烧伤,因此避免砂轮震动的首要问题点就是:
1、电磁吸盘与工件的接触是否良好;
2、工件支撑是否良好;
3、砂轮是否平衡。前两点不难理解,这也是一个熟练磨工必须掌握的技能。调整工件和支撑十分重要,在此不再赘述;
砂轮平衡,主要可分为以下步骤:调平衡→安装砂轮→试转→修圆→拆卸→调平衡→安装砂轮→试转→修圆(至无振动为止,否则继续调平),在设计生产中,新砂轮往往需要反复平衡3次以上才可用于工件磨削,对于直径600mm以上的砂轮,振动量将增加,必须用专用水平仪调至稳定才能使用。以交叉滚子轴承为例,其滚道为90度直角形状(如左图),磨削时砂轮还必须注意角度问题,佰纳轴承为测量滚道角度,专门设计了九十度直角样板,调整砂轮平衡后必须实际磨削并用样板比对,才能避免磨削过程中振动发生,保证轴承加工的精度。
综上所述,影响交叉滚子轴承生产中机床砂轮震动的主要问题可概括为:安装问题和修整问题,只有保证安装才有一个好的开始,只有不断修整才可弥补磨削损耗造成的精度丧失,当然,造成此类问题的原因还有好多,希望专业人士批评指点。
❽ 金刚石滚轮的注意事项
(1) 金刚石的粒度较被修整砂轮的粒度应粗一号,还要选择金刚石颗粒尺寸接近一致,颗粒形状近似球形,常用粒度为36 # ~100 # 。(2) 通常采用滚轮与砂轮接触点处线速度方向同向、滚轮线速度与砂轮线速度之比( qd 值) 取+ 0. 3~ + 0. 7 较好,不得超过+ 1;修整时滚轮切入量以砂轮每转切入0. 5~1 μm 为宜,每次修整砂轮的总量应为0. 02~0. 04 mm;光修时间尽量压缩。(3) 金刚石滚轮的制造误差应小于工件公差的1/ 2 左右,滚轮孔与安装轴承的配合间隙为2~4 μm。(4) 可采用天然或人造金刚石,人造金刚石必须采用高强度等级钻石,如磨钢专用金刚石SCD或高强度金刚石SMD。(5) 滚轮制造时,一般精度的滚轮可用外镀法和烧结法,高精度和复杂型面滚轮应用内镀法制造,同时进行磨削修整。(6) 金刚石滚轮修整砂轮时必须遵守快进(不能碰上砂轮) →慢进(按需要的切入速度进给) →光修→退出的动作程序,不得错步,否则滚轮寿命难以保证。
❾ 有关精密加工技术的论文
超精密加工与超高速加工技术
一、技术概述
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150-1000m/min,纤维增强塑料为2000-9000m/min。各种切削工艺的切速范围为:车削700-7000m/min,铣削300-6000m/min,钻削200-1100m/min,磨削250m/s以上等等。
超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。
超精密加工当前是指被加工零件的尺寸精度高于0.1μ m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。
二、现状及国内外发展趋势
1.超高速加工
工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。
在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提高一倍,亚音速乃至超声速加工的出现不会太遥远了。
在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。特别引人注目的是,联邦德国Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。瑞士、英国、日本也相继推出自己的超高速机床。日本日立精机的HG400III型加工中心主轴最高转速达36000-40000r/min,工作台快速移动速度为36~40m/min。采用直线电机的美国Ingersoll公司的HVM800型高速加工中心进给移动速度为60m/min。
在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。德国Guehring Automation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140-160m/s。德国阿享工业大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。德国Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs=155m/s,其Q达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μ m,一个砂轮可加工1300个工件。目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨床上,最高砂轮磨削速度达250m/s。
近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。
2.超精密加工
超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。
美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μ m),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件?2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。
在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μ m ,表面粗糙度Ra<10nm。
日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,前者是以民品应用为主要对象,后者则是以发展国防尖端技术为主要目标。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。
我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μ m的精密轴承、JCS-027超精密车床、JCS-031超精密铣床、JCS-035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。航空航天工业部三零三所在超精密主轴、花岗岩坐标测量机等方面进行了深入研究及产品生产。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。此外中科院长春光学精密机械研究所、华中理工大学、沈阳第一机床厂、成都工具研究所、国防科技大学等都进行了这一领域的研究,成绩显着。但总的来说,我国在超精密加工的效率、精度可靠性,特别是规格(大尺寸)和技术配套性方面与国外比,与生产实际要求比,还有相当大的差距。
超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。
三、“十五”目标及主要研究内容
1.目标
超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40-60m/min,砂轮磨削速度达100-150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。
2.主要研究内容
(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。
(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术,使刀具的切削速度达到国外工业发达国家90年代末的水平,磨具的磨削速度达到150m/s以上。
(5)超高速加工测试技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
(6)超精密加工的加工机理研究。“进化加工”及“超越性加工”机理研究;微观表面完整性研究;在超精密范畴内的对各种材料(包括被加工材料和刀具磨具材料)的加工过程、现象、性能以及工艺参数进行提示性研究。
(7)超精密加工设备制造技术研究。纳米级超精密车床工程化研究;超精密磨床研究;关键基础件,如轴系、导轨副、数控伺服系统、微位移装置等研究;超精密机床总成制造技术研究。
(8)超精密加工刀具、磨具及刃磨技术研究。金刚石刀具及刃磨技术、金刚石微粉砂轮及其修整技术研究。
(9)精密测量技术及误差补偿技术研究。纳米级基准与传递系统建立;纳米级测量仪器研究;空间误差补偿技术研究;测量集成技术研究。
(10)超精密加工工作环境条件研究。超精密测量、控温系统、消振技术研究;超精密净化设备,新型特种排屑装置及相关技术的研究
希望能帮到你.哈哈!
本人就是从事精密机械生产,模具加工的,转载地址:来源:http://www.china-machine.com/adv_technology/key_tec
http://www.chinainfo.gov.cn/data/200108/1_20010803_9963.html
❿ 轴承磨削工艺的常见问题和解决方案是什么
轴承是当代机械设备中一种重要零部件,它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成。在轴承制造过程中,如何采用新工艺以高精度、高效率、低投入地完成磨削,便是轴承磨削的主要任务。
轴承磨削工艺的常见问题和解决方案:
一、轴承磨削工艺的常见问题
(1)轴承精度问题
轴承精度主要由机床精度、夹具精度和磨削工艺参数综合形成的。所以合理确定数控机床磨削坐标,砂轮修正坐标的位置也是推进工件质量的重要参数。
(2)轴承烧伤问题
轴承磨削过程中工艺参数不合理或毛坯的尺寸精度控制不好会出现磨削烧伤的现象,这种磨削烧伤产生的主要因素有砂轮的线速度低、切削力低、砂轮和工件表面法向受力大等。
(3)轴承裂纹问题
当磨削参数选择不合理,磨削后中孔座面磨削表面会产生裂纹或细微裂纹,使轴承的疲劳强度下降。
二、轴承磨削工艺的解决方案
(1)轴承的装夹方式
轴承磨削时以大外圆和工艺角定位,可以避免中孔座面磨削轴向跳动。
(2)轴承的切削余量
切削余量是保证高效高精度轴承磨削的一个重要参数,通常余量都控制在微米级别。
(3)轴承的磨具选择
磨具选用时应能满足高速磨削工艺,以保证砂轮在磨削的过程中磨屑不会粘堵砂轮,保持良好的自锐性。
(4)轴承的磨削转速
工件回转转速和轴承磨削表面的直径有关,工件的转速会对磨削切痕和表面粗糙度产生较大的影响,过低的转速会使磨削表面产生波纹,增大表面残余应力,转速过高会会引起磨削表面烧伤。
三、轴承磨削技术的发展趋势
(1)高速轴承磨削技术
高速磨削能提高质量和效率,在高速磨削中砂轮除应具有足够的强度外,还需要保证具有良好的磨削性能才能获得高磨效果。
(2)新型轴承磨削砂轮
新型砂轮的制造技术、修整技术、专用轴承磨床和磨削油等正在进行技术升级改造以便满足磨削工艺的进步。
(3)砂轮自动平衡技术
机床砂轮上直接安装上机械的或其他方式的自动平衡装置,推动了磨削技术的发展,同时能够极大限度地延长砂轮、修整用金刚石及主轴轴承寿命,减小机床振动,长期保持机床的原有精度。
(4)轴承磨削数控技术
数控技术在高转速及低速运转都能保证定位精度,可以完成快跳、快趋、修整、,使机床进给机构大大简化,性能可靠性大大提高。
四、高速轴承磨削油的研制
高速磨削油在轴承磨削制造工艺中起到了关键性的作用,良好的冷却性能和极压抗磨性能对于砂轮的使用寿命和轴承精度的提升有了质的飞跃。
(1)磨削油的极压性能
专用的磨削油含有硫化极压抗磨添加剂成分,可以有效的保护磨具,提高工艺精度。
(2)磨削油的化学性能
专用的磨削油与菜籽油、机械油、再生油相比,具有良好的化学稳定性,不会对设备、人体、环境产生危害。
(3)磨削油的其他性能
专用的磨削油在粘度、闪点、倾点、导热等方面均通过严格的测试,以满足各种工艺需求。