A. 用簡便方法計算1十3十5十7十9十⋯十95十97十99。 (1)觀察發現1十99二100,3十97
(1)49+51=100,25,100×25=2500。(2)2550.
1十3十5十7十9十⋯十95十97十99=2500,2+4+6+8+10+…+96+98+100=1+1+3+1+5+1……(這里其實就是把2分成1和1相加,4分成3和1相加,6分成5和1相加,後面的以此類推)=1十3十5十7十9十⋯十95十97十99+1……+1(這里共用50個1)=2500+50=2550.
還可以這樣求(2+100)+(4+98)+...+(6+96)+(8+94)+(10+92)=102x25=2550。
其實學到以後可以用等差數列求和公式,更加簡單。
(1)9十6用簡便方法怎麼算擴展閱讀:
等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通項公式為:an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均屬於正整數。
B. 用簡便方法計算44.4x9. 6十2.22xo.8
44.4x9. 6十2.22xo.8簡算:
44.4x9.6 +22.2x0.8
=44.4×9.6+22.2×2×0.8÷2
=44.4x9.6+ 44.4x0.4
=44.4×(9.6+0.4)
=44.4×10
=444
(2)9十6用簡便方法怎麼算擴展閱讀
簡便計算方法:
1、提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2、借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
C. 0·9十6·9十79·9十899·9十999·9的簡便計算
0·9十6·9十79·9十899·9十999.9
=1+7+80+890+1000-0.5
=8+970+1000-0.5
=1978-0.5
=1977.5
D. 用3種不同的方法計算9十6
9+6
=9+1-1+6
=(9+1)+(6-1)
=10+5
=15
9+6
=10-1+10-4
=(10+10)-(1+4)
=20-5
=15
9+6
=3×3+2×3
=3×(2+3)
=3×5
=15
9+6
=9+1+5
=10+5
=15
E. 3十6十9十......十57十60用簡便方法怎樣計算
這是一組等差數列,可以用類似梯形面積那個公式:
(3+60)x20÷2
=63x10
=630
梯形面積=(上底+下底)x高÷2
等差數列求和=(首項+末項)x項數÷2
F. 99999+9999+999+99+9+6這個用簡便方法怎麼計算
原式=100000-1+10000-1+1000-1+100-1+10-1+6=111111
G. 1十2十3十4十5十6十7十8十9用簡便方法怎麼算
1+9=10,2+8=10,3+7=10,4+6=10,這四組都等於十,最後還剩下五,因為一共有四組,所以用,5×4=20,這是高斯定律
H. 10.4-9.6✘0.35怎樣簡便運算
10.4-9.6✘0.35
=10.4-4.8x(2x0.35)
=10.4-4.8x0.7
=10.4-3.36
=7.04
I. 請問下面有…這道題簡便運算方法怎麼算
先進行括弧裡面的相減,然後減完之後才跟外面的括弧系數相乘。乘完之後再進行相加。
就是按照最普通的格式,先乘除後加減來進行安排。
如果一定要化成最簡,其實反而就是一個最復雜的形勢,也就是把所有系數都換成准備數進行相加減相乘出,這樣的話就將簡單的算是復雜化了,就沒必要採取那種方式。
而且這道題也算比較基礎了,算是小學年級的乘除教學水平,如果實在不夠的話,建議可以好好去看一下書,學習一下,也能當做復習溫習一下裡面的數學內容。
畢竟如果數學基礎現在不打好的話,往後再往深處去學就會特別麻煩。
J. 六年級簡便運算是什麼
1. 6÷ 3/8 – 3/8 ÷6
=1/6x(3/8-3/8)
=1/6x0
=0
2. 4/7 × 5/9 + 3/7 × 5/9
=(4/7+3/7)x5/9
=1x5/9
=5/9
3. 5/2 -( 3/2 + 4/5 )
=5/2-3/2-4/5
=1-4/5
=1/5
4. 6 ×( 1/2 + 2/3 )
=6x1/2+6x2/3
=3+4
=7
5. 8 × 4/5 + 8 × 11/5
=8x(4/5+11/5)
=8x3
=24
簡便計算方法:
1、在同級運算中,可以任意交換數字的位置,但要連著前面的符號一起交換。(加法或乘法交換律)。
2 、在同級運算中,加號或乘號後面可以直接添括弧,去括弧。減號、除號後面添括弧,去括弧,括弧裡面的要變號。(加法或乘法結合律)。
3、湊一法,湊十法,湊百法,湊千法:「前面湊九,末尾湊十」。