A. 3、用簡便方法計算下面各題。
B. 數學簡便計算方法技巧四年級簡單易懂
1.提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
6.利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交換律,a+b=b+a
結合律,(a+b)+c=a+(b+c)
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(與加法類似):
交換律,a*b=b*a
結合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
8.裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
公式:
C. 小學四年級數學簡便計算方法技巧
四年級簡便計算例子演示23.17×12+12×46.83
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
23.17×12+12×46.83
=(23.17+46.83)×12
=70×12
=840
(3)簡便計算一看二想三變四查方法擴展閱讀[豎式計算-計算結果]:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:2×70=140
步驟二:1×70=700
根據以上計算結果相加為840
存疑請追問,滿意請採納
D. 121✖️32➗4用簡便方法計算
121 × 32 ÷ 4
= 121 × 8
= 968
E. 四年級簡便運算的技巧和方法是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
F. 四年級的題15乘23乘4的簡便計算方法
15乘23乘4
=15×4×23
=60×23
=1380
G. 25×28有哪四種簡便計算方法
第一種:假設法。
25x28
=25x30-25x2
=750-50
=700
第二種:因式分解法
25x28
=25x(4x7)
=(25x4)x7
=100x7
=700
第三種:假設法的另一種運用
25x28
=28x30-28x5
=840-140
=700
第三種:因式分解法的另一種運用
25x28
=28x(5x5)
=(28x5)x5
=140x5
=700
H. 201×43簡便方法計算
=200x43+43
=8600+43
=8643
I. 25×28用4種簡便方法計算
25×28
方法一:25×4×7
方法二:25×2×14
方法三:28×100÷4
方法四:28÷4×100
J. 24×4×250×3的簡便運算方法
這個可以用乘法交換律和乘法結合律,原式=(24×3)×(250×4)=72×1000=72000