Ⅰ 考研數學選擇題有哪些解題方法
方法1:直推法
直推法即直接分析推導法。直推法是由條件出發,運用相關知識,直接分析、推導或計算出結果,從而作出正確的判斷和選擇。計算類選擇題一般都用這種方法,其它題也常用這種方法,這是最基本、最常用、重要的方法。
方法2:反推法
反推法即反向推導或反向代入法。反推法是由選項(即選擇題的各個選項)反推條件,與條件相矛盾的選項則排除,相吻合的則是正確選項,或者將某個或某幾個選項依次代入題設條件進行驗證分析,與題設條件相吻合的就是正確的選項。
方法3:反證法
在選擇題的4個選項中,若假設某個選項不正確(或正確)可以推出矛盾,則說明該選項是正確選項(或不正確選項)。選擇先從哪個選項著手證明,須根據題目條件具體分析和判斷,有時可能需要一些直覺。
方法4:反例法
如果某個選項是一個命題,要排除該選項或說明該命題是錯誤的,有時只要舉一個反例即可。舉反例通常是用一些常用的、比較簡單但又能說明問題的例子。如果大家在平時復習或做題時適當注意積累一下與各個知識點相關的不同反例,則在考試中可能會派上用場。
方法5:特例法(特值法)
如果題目是一個帶有普遍性的命題,則可以嘗試採取一種或幾種特殊情況、特殊值去驗證哪些選項是正確的、哪些是錯誤的,或者哪些極有可能是正確的或錯誤的,從而做出正確的選擇。
特例法用於以下幾種情況時特別有效:(1)條件和結論帶有一定的普遍性時,過取特例來確定或排除某些選項(2)對於不成立或極有可能不成立的結論需用舉反例的方法證明其是錯誤時(3)對於一些難以作出判斷的題,假設在特殊情況下來考察其正確與否。
方法6:數形結合法
根據條件畫出相應的幾何圖形,結合數學表達式和圖形進行分析,從而做出正確的判斷和選擇。這種方法常用於與幾何圖形有關的選擇題,如:定積分的幾何意義,二重積分的計算,曲線和曲面積分等。
方法7:排除法
如果可以過一種或幾種方法排除4個選項中的3個,則剩下的那個當然就是正確的選項,或者先排除4個選項中的2個,然後再對其餘的2個進行判斷和選擇。
方法8:直覺法
考研數學如果採用以上各種方法仍無法作出選擇,那就憑直覺或第一印象作選擇。雖然直覺法不是很可靠,但可以作為一種參考,況且人的直覺或第一印象有時還是有一定效果的。
考研數學選擇題有哪些解題方法?小編就說到這里了,更多關於考研報名入口,報名時間,考研成績查詢,報名費用,考研准考證列印入口及時間等問題,小編會及時更新。希望各位考生都能進入自己的理想院校。大家一定要掌握備考技巧。
Ⅱ 高中數學大題解題方法有哪些
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數列題
1.證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2.最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1.證明線面位置關系,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3.注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
四、概率問題
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2.搞清是什麼概率模型,套用哪個公式;
3.記准均值、方差、標准差公式;
4.求概率時,正難則反(根據p1+p2+...+pn=1);
5.注意計數時利用列舉、樹圖等基本方法;
6.注意放回抽樣,不放回抽樣;
7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8.注意條件概率公式;
9.注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2.注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;
3.戰術上整體思路要保7分,爭9分,想12分。
六、導數、極值、最值、不等式恆成立(或逆用求參)問題
1.先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2.注意最後一問有應用前面結論的意識;
3.注意分論討論的思想;
4.不等式問題有構造函數的意識;
5.恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6.整體思路上保6分,爭10分,想14分。
Ⅲ 常用的數學解題方法有哪些
😜
Ⅳ 小學數學解題方法有哪些
(1)解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(2)簡單應用題:
只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(3)解答減法應用題:
a求剩餘的應用題:從已知數中去掉一部分,求剩下的部分。
b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c求比一個數少幾的數的應用題:已知甲數是多少,乙數比甲數少多少,求乙數是多少。
(4)解題步驟:
a審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。
c檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
(5)常見的數量關系:
-總價=單價×數量
-路程=速度×時間
-工作總量=工作時間×工效
-總產量=單產量×數量
(6)解答乘法應用題:
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
(7)解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
c求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d已知一個數的幾倍是多少,求這個數的應用題。
Ⅳ 數學解題方法
一、換元法
「換元」的思想和方法,在數學中有著廣泛的應用,靈活運用換元法解題,有助於數量關系明朗化,變繁為簡,化難為易,給出簡便、巧妙的解答。
在解題過程中,把題中某一式子如f(x),作為新的變數y或者把題中某一變數如x,用新變數t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變數代換,得到結構簡單便於求解的新解題方法,通常稱為換元法或變數代換法。
用換元法解題,關鍵在於根據問題的結構特徵,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數式代換,對數式代換,三角式代換,反三角式代換,復變數代換等,宜在解題實踐中不斷總結經驗,掌握有關的技巧。
例如,用於求解代數問題的三角代換,在具體設計時,宜遵循以下原則:(1)全面考慮三角函數的定義域、值域和有關的公式、性質;(2)力求減少變數的個數,使問題結構簡單化;(3)便於藉助已知三角公式,建立變數間的內在聯系。只有全面考慮以上原則,才能謀取恰當的三角代換。
換元法是一種重要的數學方法,在多項式的因式分解,代數式的化簡計算,恆等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數方程、極坐標方程的互化等問題中,都有著廣泛的應用。 答案補充 二、消元法
對於含有多個變數的問題,有時可以利用題設條件和某些已知恆等式(代數恆等式或三角恆等式),通過適當的變形,消去一部分變數,使問題得以解決,這種解題方法,通常稱為消元法,又稱消去法。
消元法是解方程組的基本方法,在推證條件等式和把參數方程化成普通方程等問題中,也有著重要的應用。
用消元法解題,具有較強的技巧性,常常需要根據題目的特點,靈活選擇合適的消元方法 答案補充 三、待定系數法
按照一定規律,先寫出問題的解的形式(一般是指一個算式、表達式或方程),其中含有若干尚待確定的未知系數的值,從而得到問題的解。這種解題方法,通常稱為待定系數法;其中尚待確定的未知系數,稱為待定系數。
確定待定系數的值,有兩種常用方法:比較系數法和特殊值法。
四、判別式法
實系數一元二次方程
ax2+bx+c=0 (a≠0) ①
的判別式△=b2-4ac具有以下性質:
>0,當且僅當方程①有兩個不相等的實數根
△ =0,當且僅當方程①有兩個相等的實數根;
<0,當且僅當方程②沒有實數根。
對於二次函數
y=ax2+bx+c (a≠0)②
它的判別式△=b2-4ac具有以下性質:
>0,當且僅當拋物線②與x軸有兩個公共點;
△ =0,當且僅當拋物線②與x軸有一個公共點;
<0,當且僅當拋物線②與x軸沒有公共點。 答案補充 五、 分析法與綜合法
分析法和綜合法源於分析和綜合,是思維方向相反的兩種思考方法,在解題過程中具有十分重要的作用。
在數學中,又把分析看作從結果追溯到產生這一結果的原因的一種思維方法,而綜合被看成是從原因推導到由原因產生的結果的另一種思維方法。通常把前者稱為分析法,後者稱為綜合法。
六、 數學模型法
例(哥尼斯堡七橋問題)18世紀東普魯士哥尼斯堡有條普萊格河,這條河有兩個支流,在城中心匯合後流入波羅的海。市內辦有七座各具特色的大橋,連接島區和兩岸。每到傍晚或節假日,許多居民來這里散步,觀賞美麗的風光。年長日久,有人提出這樣的問題:能否從某地出發,經過每一座橋一次且僅一次,然後返回出發地?
數學模型法,是指把所考察的實際問題,進行數學抽象,構造相應的數學模型,通過對數學模型的研究,使實際問題得以解決的一種數學方法。
Ⅵ 高中數學解題方法有哪些
1、配方法
把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
Ⅶ 初中數學考試要掌握哪些答題的技巧
懂得對於難易題目的取捨
初中數學考試的時候,顯然一張試卷上對於題目的設置,都會有難易的配比,在答題的時候,就要注意下掌握好對於難以題目的取捨。一般情況下試題上的難易分布,是按照前面簡單,到後面就逐漸加深難度的,因此你就要注意先做前面的,不要急著去看後面的題目,說不定你看到後面的難題,一下子就被震懾住了,以至於前面的題目都不能好好作答。
答題的步驟一定要規范化
現在的初中數學考試對於前面的選擇題,多數都是採用計算機閱卷了,因此對於這些題目,你重要的就是掌握正確率。而對於一些主觀題,則要注意下答題的規范化,要確保你的所有答案都有得分的機會是不可能的,但是在分步解答的時候,更好是做到規范,這樣即使本身沒有答對,你也可以得到分步解答的分數。
答題的自己務必確保清晰
有不少的學生都會有這樣的問題,在寫字方面根本就不重視,尤其是考慮到只是初中數學考試,可能不會要求寫多好的漢字,但是你還是要注意確保下自己足夠清晰。假設一下,如果你是閱卷老師,根本就看不清楚試卷上寫的什麼東西,你會不會給分?要知道,你的字跡只有更清晰才能夠確保閱卷老師避免誤判。
以上是關於初中數學考試要掌握哪些答題的技巧的介紹,希望在應對數學考試的時候能夠給你帶去一些提醒作用。上海快樂學習提醒,在平時的練習中都應該注意總結一些有效的答題技巧,只要好好運用相信在考試的過程中肯定會發揮其作用旳。
Ⅷ 怎樣解題 高中數學解題方法與技巧
2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)
鏈接:
若資源有問題歡迎追問~
Ⅸ 數學方法包括哪些
所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序.同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法.數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法.
數學方法具有以下三個基本特徵:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴密性及結論的確定性;三是應用的普遍性和可操作性.
數學方法在科學技術研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具.現代科學技術特別是電子計算機的發展,與數學方法的地位和作用的強化正好是相輔相成.
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色.
(2)數學中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛.
(3)數學中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等.這些方法在解決某些數學問題時也起著重要作用,我們不可等閑視之.