❶ 納米材料有幾種制備方法
一共有十餘種制備方法,常見制備方法:化學氣相法 激光法 化學液相沉澱法 溶膠-凝膠法 水熱法有機溶劑熱法 模板法超神化學法 輻射化學法 噴霧熱解法 固相化學法
❷ 制備金屬納米材料的通常有哪些方法
有很多,最常見的就是CVD方法和CBD方法,還有爆哄法等等
❸ 納米粉體材料有哪些制備方法
納米粒子的制備方法很多,可分為物理方法和化學方法。
1.
物理方法
(1)真空冷凝法
用真空蒸發、加熱、高頻感應等方法使原料氣化或形成等離子體,然後驟冷。其特點純度高、結晶組織好、粒度可控,但技術設備要求高。
(2)物理粉碎法
通過機械粉碎、電火花爆炸等方法得到納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
(3)機械球磨法
採用球磨方法,控制適當的條件得到純元素納米粒子、合金納米粒子或復合材料的納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
2.
化學方法
(1)氣相沉積法
利用金屬化合物蒸氣的化學反應合成納米材料。其特點產品純度高,粒度分布窄。
(2)沉澱法
把沉澱劑加入到鹽溶液中反應後,將沉澱熱處理得到納米材料。其特點簡單易行,但純度低,顆粒半徑大,適合制備氧化物。
(3)水熱合成法
高溫高壓下在水溶液或蒸汽等流體中合成,再經分離和熱處理得納米粒子。其特點純度高,分散性好、粒度易控制。
(4)溶膠凝膠法
金屬化合物經溶液、溶膠、凝膠而固化,再經低溫熱處理而生成納米粒子。其特點反應物種多,產物顆粒均一,過程易控制,適於氧化物和Ⅱ~Ⅵ族化合物的制備。
(5)微乳液法
兩種互不相溶的溶劑在表面活性劑的作用下形成乳液,在微泡中經成核、聚結、團聚、熱處理後得納米粒子。其特點粒子的單分散和界面性好,Ⅱ~Ⅵ族半導體納米粒子多用此法制備
❹ 如何製取納米材料
用一般機械粉碎法很難獲得納米材料,通常採用熔融金屬霧化法和氣體沉積法來製取納米材料。霧化法凝結力強,產量高,但顆粒不太均勻;氣體沉積法能獲得清潔的超微粒子,而且顆粒大小易於控制。
80年代末,日本研製成一種沖擊式超微粉碎機,能製造直徑1微米以下的超微粉末。德國科學家於90年代初發明了一種生產金屬超微粒子的新方法,是在一個封閉室內放進金屬,然後充滿惰性氣體氦,再將金屬加熱變成蒸氣,於是金屬原子在氦氣中冷卻成金屬煙霧,並使金屬煙霧粘附在一個冷卻棒上,再把棒上像碳黑一樣的納米大小的粉末刮到一個容器內;如果要用這些粉末製作零件,就可將它們模壓成零件形成,通過燒結即可製成納米材料零件。
❺ 納米材料的制備方法(中文,英文)越全越好
納米材料的制備方法主要包括物理法和化學法兩大類。
1 物理法:放電爆炸法、機械合金化法、嚴重塑性變形法、惰性氣體蒸發法、等離子蒸發法、電子束法、激光束法等。
2 化學法:氣相燃燒合成法、氣相還原法、等離子化學氣相沉積法、溶膠一凝膠法、共沉澱法、碳化法、微乳液法、絡合物分解法等。納米微粒和納米材料具有廣闊的應用前景,它的應用領域包括化工、機械、生物工程、電子、航天、陶瓷等方面。
(1)納米微粒用作催化劑。聚合型馬來醯亞胺樹脂材料在軍工、民用行業得到廣泛應用,它性能優良,被認為是最有發展前途的樹脂基體。納米TiO2可作為N—苯基馬來醯亞胺聚合反應的催化劑。
(2)納米微粒可提高陶瓷塑性。納米TiO2與其它金屬氧化物納米晶一起可組成具有優良力學性能的各種新型復合陶瓷材料,在開發超塑性陶瓷材料方面具有誘人的前景。
(3)納米微粒用作潤滑油添加劑,可大大減輕摩擦件之間的磨損。把平均粒徑小於10nm的金剛石微粒(NMD)均勻加入Cu10Sn合金基體中,干滑動摩擦試驗結果表明:在載荷78N、滑動速率低於1.6m/s時,Cu10Sn2NMD復合材料的摩擦因數穩定在0.19左右,遠低於基體Cu10Sn合金(μ=0.31~0.38)。而且Cu10Sn合金在摩擦過程中產生較大的噪音,摩擦過程不平穩,而Cu10Sn2NMD復合材料摩擦過程非常平穩,噪音很低,並且在摩擦副的表面形成了部分連續的固體潤滑膜。
(4)納米顆粒用於生物感測器。葡萄糖生物感測器在臨床醫學、食品工業等方面都有重要的用途。將金、銀、銅等納米顆粒引入葡萄糖氧化酶膜層中,由此製得的生物感測器體積小,電極響應快、靈敏度高。
(5)納米復合材料。採用溶膠—凝膠法可制備出聚醯亞胺/二氧化硅納米復合材料。
(6)納米微晶應用於磁性材料中,可制備出高效電子元件和高密度信息貯存器。
❻ 納米金屬粉末的特點有什麼,有哪些制備方法
納米金屬粉末的特點:
1.高效催化劑:納米粉末所具有的高活性、比表面積大的特點使其常適於用作為催化劑。實驗研究表明,納米鈷粉、粉、鋅粉等具有極強的催化效果。利用這些納米粉末製成的催化劑在一些有機物的化學合成方面,催化效率比傳統催化劑要高出數十倍,可用於有機物氫化反應、汽車尾氣處理等。(納米鈷粉,納米鎳粉,納米鋅粉)
2.高效助燃劑:納米粉末具有極強的儲能特性,將其作為添加劑加入燃料中可大大提高燃燒率。將一些納米粉末添加到火箭的固體燃料推進劑中, 可大幅度提高燃料的燃燒熱、燃燒效率,改善燃穩定性。有研究表明,向火箭固體燃料中加入0.5%納米鋁粉或鎳粉,可使燃燒效率提高10%-25%,燃燒速度加快數十倍。(納米鋁粉,納米鎳粉)
納米金屬粉末的制備方法:
1.傳統制備方法:氣相法、液相法、固相法。
2.新型制備方法:等離子氣化法、金屬噴霧燃燒法。
❼ 納米材料怎麼做
納米材料制備方法:
一、惰性氣體下蒸發凝聚法
通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研製成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法製成金屬、半導體、陶瓷等納米材料。
二、化學方法
水熱法,包括水熱沉澱、合成、分解和結晶法,適宜制備納米氧化物;水解法,包括溶膠-凝膠法、溶劑揮發分解法、乳膠法和蒸發分離法等。
三、綜合方法
結合物理氣相法和化學沉積法所形成的制備方法。其他一般還有球磨粉加工、噴射加工等方法。
(7)金納米粒子制備的其他方法有哪些擴展閱讀:
納米材料的效應有:
一、體積效應
當納米粒子的尺寸與傳導電子的德布羅意波相當或更小時,周期性的邊界條件將被破壞,磁性、內壓、光吸收、熱阻、化學活性、催化性及熔點等都較普通粒子發生了很大的變化,這就是納米粒子的體積效應。
二、量子尺寸
粒子尺寸下降到一定值時,費米能級接近的電子能級由准連續能級變為分立能級的現象稱為量子尺寸效應。Kubo採用一電子模型求得金屬超微粒子的能級間距為:4Ef/3N。
三、量子隧道
微觀粒子具有貫穿勢壘的能力稱為隧道效應。人們發現一些宏觀量,例如微顆粒的磁化強度、量子相干器件的磁通量以及電荷等亦具有隧道效應,它們可以穿越宏觀系統的勢壘產生變化,故稱為宏觀的量子隧道效應。用此概念可定性解釋超細鎳微粒在低溫下保持超順磁性等。
參考資料來源:網路—納米材料
❽ 納米金的制備方法
配製濃度為2.44×10-3 mol/L 的HAuCl4·4H2O溶液、濃度為3.43×10-2 mol/L 的Na3C6H5O7·2H2O 溶液、濃度為1.00×10-4 mol/L 的 PVP 溶液, 以及濃度為0.391 mol/L 的NaBH4 溶液備用。在燒杯中加入10 mL 氯金酸溶液, 10 mL 或不加保護劑溶液, 80 mL 三蒸水, 將燒杯置於數顯測速恆溫磁力攪拌器上, 邊加熱邊攪拌, 攪拌的轉速設置為600 r/min, 加熱至75℃, 恆溫2 min, 用移液管移取一定體積的還原劑(Na3C6H5O7 或NaBH4)溶液,迅速一次加入到上述混合液, 開始計時, 使液體顏色恆定並持續加熱一段時間共9 min, 停止加熱, 繼續攪拌5 min 後, 停止攪拌, 冷卻至室溫, 所得液體為納米金溶膠。
❾ 什麼是納米粒子,有哪些常見的制備方法
納米粒子是指粒度在1—100nm之間的粒子(納米粒子又稱超細微粒)。屬於膠體粒子大小的范疇。它們處於原子簇和宏觀物體之間的過度區,處於微觀體系和宏觀體系之間,是由數目不多的原子或分子組成的集團,因此它們既非典型的微觀系統亦非典型的宏觀系統。可以預見,納米粒子應具有一些新異的物理化學特性。 納米粒子區別於宏觀物體結構的特點是,它表面積占很大比重,而表面原子既無長程序又無短程序的非晶層。可以認為納米粒子表面原子的狀態更接近氣態,而粒子內部的原子可能呈有序的排列。即使如此,由於粒徑小,表面曲率大,內部產生很高的Gilibs壓力,能導致內部結構的某種變形。納米粒子的這種結構特徵使它具有下列四個方面的效應。 1.體積效應 2.表面效應 3.量子尺寸效應 4.宏觀量子隧道效應